Mathematische Zeitschrift

, Volume 186, Issue 3, pp 377–382 | Cite as

Minimal immersions of 2-manifolds into spheres

  • Michael Kozlowski
  • Udo Simon
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benko, K., Kothe, M., Semmler, K.-D. Simon, U.: Eigenvalues of the Laplacian and curvature. Colloq. Math.42, 19–31 (1979)Google Scholar
  2. 2.
    Calabi, E.: Minimal immersions of surfaces in euclidean spheres. J. Differential Geom.1, 111–125 (1967)Google Scholar
  3. 3.
    Chern, S.S., do Carmo, M., Kobayashi, S.: Minimal submanifolds of a sphere with second fundamental form of constant length. In: Functional Analysis and Related Fields pp. 59–75. Berlin-Heidelberg-New York: Springer 1970Google Scholar
  4. 4.
    do Carmo, M.P., Wallach, N.R.: Minimal immersions of spheres into spheres. Ann. Math. (2)93, 43–62 (1971)Google Scholar
  5. 5.
    Gallot, S.: Équations différentielles charactéristiques de la sphère Ann. Sci. École Norm. Sup. (4)12, 235–267 (1979)Google Scholar
  6. 6.
    Kozlowski, M.: Geometrische Abschätzungen für kleine Eigenwerte des Laplaceoperators auf fast-sphärischen Rotationsellipsoiden. Dissertation, FB 3 TU Berlin 1983Google Scholar
  7. 7.
    Lange, F.-J., Simon, U.: Eigenvalues and eigenfunctions of Riemannian manifolds. Proc. Amer. Math. Soc.77, 237–242 (1979)Google Scholar
  8. 8.
    Lawson, H.B.: Local rigidity theorems for minimal hypersurfaces. Ann. Math. (2)89, 187–197 (1969)Google Scholar
  9. 9.
    Obata, M.: Certain conditions for a Riemannian manifold to be isometric with a sphere. J. Math. Soc. Japan14, 333–340 (1962)Google Scholar
  10. 10.
    Simon, U.: Submanifolds with parallel mean curvature vector and the curvature of minimal submanifolds of spheres. Arch. Math. (Basel)29, 106–112 (1977)Google Scholar
  11. 11.
    Takahashi, T.: Minimal immersions of Riemannian manifolds. J. Math. Soc. Japan18, 380–385 (1966)Google Scholar
  12. 12.
    Tanno, S.: Some differential equations on Riemannian manifolds. J. Math. Soc. Japan30, 509–531 (1978)Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Michael Kozlowski
    • 1
  • Udo Simon
    • 1
  1. 1.Fachbereich 3, MathematikTechnische Universität BerlinBerlin 12West Germany

Personalised recommendations