manuscripta mathematica

, Volume 36, Issue 1, pp 105–123 | Cite as

Liquid drops in a viscous fluid under the influence of gravity and surface tension

  • J. Bemelmans


We consider the steady fall of a drop of fluid under its own weight in an infinite reservoir of another viscous fluid; the shape of the drop is determined by surface tension. For small data we prove existence and uniqueness of a classical solution to this problem.


Surface Tension Number Theory Classical Solution Algebraic Geometry Topological Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    BABENKO, K.I.: On stationary solutions of the problem of flow past a body of a viscous incompressible fluid, Math. USSR Sbornik20,(1973) 1–25Google Scholar
  2. [2]
    BEMELMANS, J.: Gleichgewichtsfiguren zäher Flüssigkeiten unter dem Einfluß von Oberflächen-spannung, to appear in AnalysisGoogle Scholar
  3. [3]
    FINN, R.: On the Exterior Stationary Problem for the Navier-Stokes Equations, and Associated Perturbation Problems, Arch. Rat. Mech. Analysis19, (1965) 363–406Google Scholar
  4. [4]
    FUNK, P.: Variationsrechnung und ihre Anwendung in Physik und Technik, Berlin-Göttingen-Heidelberg 1962Google Scholar
  5. [5]
    GIAQUINTA, M. - MODICA, G.: Nonlinear Systems of the Type of the Stationary Navier-Stokes System, to appear in J. Reine Angew. Math.Google Scholar
  6. [6]
    LICHTENSTEIN, L.: Über einige Hilfssätze der Potentialtheorie, Math. Z.23,(1925) 72–88Google Scholar
  7. [7]
    McDONALD, J.E.: The Shape of Raindrops, Sci. Am. 2/1954Google Scholar
  8. [8]
    NEWTON, I.: Philosphiae Naturalis Principia Mathematica, London 1687Google Scholar
  9. [9]
    WEINBERGER, H.F.: Variational properties of steady fall in Stokes flow, J. Fluid Mech.52, (1972) 321–344Google Scholar
  10. [10]
    WEINBERGER, H.F.: On the steady fall of a body in a Navier-Stokes fluid, Proc. Symp. Pure Mathem.23, (1973) 421–440Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • J. Bemelmans
    • 1
  1. 1.Mathematisches InstitutUniversität BonnBonn 1

Personalised recommendations