Advertisement

Mathematische Zeitschrift

, Volume 178, Issue 4, pp 527–554 | Cite as

Counting elements in homotopy sets

  • Robert M. Switzer
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barratt, M.G.: Track Groups (I). Proc. London Math. Soc. (3)5, 71–106 (1955)Google Scholar
  2. 2.
    Baues, H.: Obstruction theory. Lecture Notes in Mathematics628. Berlin-Heidelberg-New York: Springer 1977Google Scholar
  3. 3.
    Becker, J.C.: Cohomology and the classification of liftings. Trans. Amer. Math. Soc.133, 447–475 (1968)Google Scholar
  4. 4.
    Bott, R.: A note on the Samelson product in the classical groups. Comment. Math. Helv.34, 249–256 (1960)Google Scholar
  5. 5.
    Federer, H.: A study of function spaces by spectral sequences. Trans. Amer. Math. Soc.82, 340–361 (1956)Google Scholar
  6. 6.
    James, I.M.: Note on cup-products. Proc. Amer. Math. Soc.8, 374–383 (1957)Google Scholar
  7. 7.
    James, I.M., Thomas, E.: An approach to the enumeration problem for non-stable vector bundles. J. Math. Mech.14, 485–506 (1965)Google Scholar
  8. 8.
    McClendon, J.F.: Higher order twisted cohomology operations. Invent. Math.7, 183–214 (1969)Google Scholar
  9. 9.
    McClendon, J.F.: Obstruction theory in fibre spaces. Math. Z.120, 1–17 (1971)Google Scholar
  10. 10.
    Mimura, M., Toda, H.: Homotopy groups ofSU(3),SU(4) andSp(2). J. Math. Kyoto Univ.3, 217–250 (1963–64)Google Scholar
  11. 11.
    Switzer, R.M.: Postnikov towers associated with complex 2-plane and symplectic line bundles. Math. Z.168, 87–103 (1979)Google Scholar
  12. 12.
    Switzer, R.M.: Complex 2-plane bundles over complex projective space. Math. Z.168, 275–287 (1979)Google Scholar
  13. 13.
    Switzer, R.M.: Bundles of low codimension over ℂP n. PreprintGoogle Scholar
  14. 14.
    Thomas, E.: Lectures on fibre spaces. Lecture Notes in Mathematics13. Berlin-Heidelberg-New York: Springer 1966Google Scholar
  15. 15.
    Toda, H.: Composition methods in homotopy groups of spheres. Annals of Mathematics Studies49. Princeton: Princeton University Press 1962Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Robert M. Switzer
    • 1
  1. 1.Mathematisches Institut der UniversitätGöttingenGermany

Personalised recommendations