Mathematische Zeitschrift

, Volume 178, Issue 4, pp 501–508

A relation between growth and the spectrum of the Laplacian

  • Robert Brooks
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berenstein, C., Zalcman, L.: Pompeiu's Problem in Symmetric Spaces. Comment. Math. Helv.55, 593–621 (1980)Google Scholar
  2. 2.
    Bishop, R., Crittenden, R.: Geometry of Manifolds. New York-London: Academic Press 1964Google Scholar
  3. 3.
    Brooks, R.: Exponential Growth and the Spectrum of the Laplacian. Proc. Amer. Math. Soc.82, 473–477 (1981)Google Scholar
  4. 4.
    Brooks, R.: The Fundamental Group and the Spectrum of the Laplacian. PreprintGoogle Scholar
  5. 5.
    Cheeger, J.: A Lower Bound for the Smallest Eigenvalue of the Laplacian. In: Problems in analysis (Ed. R.C. Gunning). A Symposium in Honor of Salomon Bochner (Princeton 1969), pp. 195–199. Princeton: Princeton University Press 1970Google Scholar
  6. 6.
    Cheng, S. Y.: Eigenvalue Comparison Theorems and its Geometric Applications. Math. Z.143, 289–297 (1975)Google Scholar
  7. 7.
    Donnelly, H.: On the Essential Spectrum of a Complete Riemannian Manifold. Topology20, 1–14 (1981)Google Scholar
  8. 8.
    Donnelly, H., Li, P.: Pure Point Spectrum and Negative Curvature for Non-Compact Manifolds. Duke Math. J.46, 497–503 (1979)Google Scholar
  9. 9.
    McKean, H. P. An Upper Bound to the Spectrum of Δ on a Manifold of Negative Curvature. J. Differential Geometry4, 359–366 (1970)Google Scholar
  10. 10.
    Milnor, J.: A Note on Curvature and Fundamental Group. J. Differential Geometry2, 1–7 (1968)Google Scholar
  11. 11.
    Pinsky, M.: The Spectrum of the Laplacian on a Manifold of Negative Curvature I. J. Differential Geometry13, 87–91 (1978)Google Scholar
  12. 12.
    Pinsky, M.: An Improved Bound for the Spectrum of the Laplacian. PreprintGoogle Scholar
  13. 13.
    Yau, S. T.: Isoperimetric Constants and the First Eigenvalue of a Complete Riemannian Manifold. Ann. Sci. Ecole Norm. Sup. (4)8, 487–507 (1975)Google Scholar
  14. 14.
    Baider, A.: Noncompact Manifolds with Discrete Spectra. J. Differential Geometry14, 41–57 (1979)Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Robert Brooks
    • 1
  1. 1.Department of Mathematics and Institute for Physical Science and TechnologyUniversity of MarylandCollege ParkUSA

Personalised recommendations