Advertisement

Acta Mechanica

, Volume 83, Issue 1–2, pp 61–75 | Cite as

Elastic waves in randomly stratified medium. Analytical results

  • Z. Kotulski
Contributed Papers

Summary

Propagation of elastic harmonic waves through a stratified slab is investigated. It is assumed a nonzero angle of inclination of an incident wave. The equation for the amplitudes of reflected and transmitted waves are presented in the form useful for simulation. Then a limiting case where the density of stratification of the slab tends to infinity is analysed and the equations for the amplitudes of the waves in a homogenized medium are obtained. Finally, the law of large numbers for noncommuting random products is applied to the randomized equation for amplitudes showing its convergence to some deterministic effective one for increasing density of stratification.

Keywords

Dynamical System Stratification Fluid Dynamics Incident Wave Elastic Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Ursin, B.: Review of elastic and electromagnetic wave propagation in horizontally layered media. Geophysics48, 1063–1081 (1983).Google Scholar
  2. [2]
    Chapman, C. H.: A new method for computing synthetic seismograms. Geophys. J. R. Astron. Soc.54, 481–518 (1978).Google Scholar
  3. [3]
    Kennett, B. L. N.: Seismic wave propagation in stratified media. London: Cambridge Univ. Press 1983.Google Scholar
  4. [4]
    Brekhovskikh, L. M.: Waves in layered media. New York: Academic Press 1960.Google Scholar
  5. [5]
    Kennett, B. L. N.: Elastic wave propagation in stratified media. In: Advances in applied mechanics, Vol. 21 (Yih, C.-S., ed.). New York: Academic Press 1981.Google Scholar
  6. [6]
    Pao, Y. H., Gajewski, R. R.: The generalized ray-theory and transient responses of layered elastic solids. In: Physical acoustics, Vol. 13 (Mason, W. P., Thurston, R. N., eds.), pp. 184 to 256. New York: Academic Press 1977.Google Scholar
  7. [7]
    Ziegler, F., Pao, Y.-H., Wang, Y. S.: Generalized ray-integral representation of transient SH-waves in a multiply layered half-space with dipping structure. Acta Mechanica56, 1–15 (1985).Google Scholar
  8. [8]
    Aboudi, J.: Harmonic waves in composite materials. Wave Motion8, 289–303 (1986).Google Scholar
  9. [9]
    Aboudi, J.: Transient waves in composite materials. Wave Motion9, 141–156 (1987).Google Scholar
  10. [10]
    Becus, G.: Wave propagation in imperfectly periodic structures: a random evolution approach. ZAMP29, 252–261 (1978).Google Scholar
  11. [11]
    Becus, G.: Diffusion approximation of wave propagation in imperfectly periodic structures. ZAMP30, 724–727 (1979).Google Scholar
  12. [12]
    Ziegler, F.: Mean waves in laminated random media. Int. J. Solids Structures5, 893–914 (1967).Google Scholar
  13. [13]
    Ziegler, F.: Wave propagation in periodic and disordered layered composite elastic materials. Int. J. Solids Structures13, 293–305 (1977).Google Scholar
  14. [14]
    Papanicolaou, G.: Waves in one-dimensional random media. In: Ecole d'Ete de Probabilites de Saint-Flour XV–XVII, 1985–87 (Hennequin, P. L., ed.), Lect. Not. Math. 1362. Berlin-Heidelberg-New York-Tokyo: Springer 1988.Google Scholar
  15. [15]
    Hodges, C. H.: Confinement of vibration by structural irregularity. J. Sound Vibration82, 411–424 (1982).Google Scholar
  16. [16]
    Scott, J. F. M.: The statistics of waves propagating in a one-dimensional random medium. Proc. Roy. Soc. LondonA398, 341–363 (1985).Google Scholar
  17. [17]
    Robinson, E. A.: Waves propagating in random media as statistical time series. In: Applied time series analysis (Findley, D. F., ed.), pp. 287–324. New York: Academic Press 1978.Google Scholar
  18. [18]
    Sobczyk, K.: Stochastic wave propagation. Warsaw: PWN-Elsevier 1984.Google Scholar
  19. [19]
    Kotulski, Z.: Wave propagation in a randomly stratified medium. J. Sound Vibration128, 195–208 (1989).Google Scholar
  20. [20]
    Kotulski, Z.: On the effective reflection properties of the randomly stratified elastic slab. ZAMM (to appear 1990).Google Scholar
  21. [21]
    Thomson, W. T.: Transmission of elastic waves through a stratified solid medium. J. Appl. Phys.21, 89–93 (1950).Google Scholar
  22. [22]
    Haskall, N. A.: The dispersion of surface waves on multilayered media. Bull. Seismol. Soc. of America43, 17–34 (1953).Google Scholar
  23. [23]
    Berger, M. A.: Central limit theorem for products of random matrices. Trans. A.M.S.285, 777–803 (1984).Google Scholar
  24. [24]
    Furstenberg, H.: Noncommuting random products. Trans. AMS108, 377–428 (1963).Google Scholar
  25. [25]
    Landau, L. D., Lifshitz, E. M.: Theory of elasticity. London: Pergamon Press 1959.Google Scholar
  26. [26]
    Sanchez-Palencia, E.: Non-homogeneous media and vibration theory. Lect. Notes Phys. 127, Berlin-Heidelberg-New York: Springer 1980.Google Scholar
  27. [27]
    Bellman, R.: Introduction to matrix analysis. New York: McGraw-Hill Book Comp. 1960.Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Z. Kotulski
    • 1
  1. 1.Institute of Fundamental Technological ResearchPolish Academy of SciencesWarsawPoland

Personalised recommendations