manuscripta mathematica

, Volume 47, Issue 1–3, pp 105–132 | Cite as

Monomial Buchsbaum ideals in ℙr

  • Henrik Bresinsky


Number Theory Algebraic Geometry Topological Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bresinsky, H.: Minimal free resolutions of monomial curves in ℙk3. Linear Algebra and its Applications, to appearGoogle Scholar
  2. [2]
    Bresinsky, H. and B. Renschuch: Basisbestimmung Veronesescher Projektionsideale mit allgemeiner Nullstelle (t0m, t0m−rt1r, t0m−st1s, t1m). Math. Nachrichten 96 (1980), 257–269Google Scholar
  3. [3]
    Bresinsky, H. and P. Schenzel and W. Vogel: On liaison, arithmetical Buchsbaum curves and monomial curves in ℙ3, Queen's University Mathematical Preprint No. 1981–24Google Scholar
  4. [4]
    Goto, S.: On the Cohen-Macaulayfication of certain Buchsbaum rings. Nagoya J. Math. 80 (1980), 107–116Google Scholar
  5. [5]
    Herzog, J.: Generators and relations of Abelian semigroups and semigroup rings. manuscripta math. 3(1970), 175–193Google Scholar
  6. [6]
    Herzog, J. and E. Kunz: Die Wertehalbgruppe eines lokalen Rings der Dimension 1. Sitzungsberichte der Heidelberger Akademie der Wissenchaften, Springer Verlag, Berlin-Heidelberg, New York (1971)Google Scholar
  7. [7]
    Renschuch, B.: Elementare und praktische Idealtheorie. VEB Deutscher Verlag der Wissenschaften, Berlin (1976)Google Scholar
  8. [8]
    Trung, N. V.: Projections of one-dimensional Veronese varieties. PreprintGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Henrik Bresinsky
    • 1
  1. 1.Department of MathematicsUniversity of MaineOrono

Personalised recommendations