Mathematische Zeitschrift

, Volume 159, Issue 1, pp 65–88

Equilibrium states forβ-transformations and related transformations

  • Peter Walters


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bowen, R.: Bernoulli equilibrium states for Axiom A diffeomorphisms. Math. Systems Theory8, 289–294 (1975)Google Scholar
  2. 2.
    Bowen, R.: Some systems with unique equilibrium states. Math. Systems Theory8, 193–202 (1975)Google Scholar
  3. 3.
    Bowen, R.: Equilibrium states and the ergodic theory of Anosov diffeomorphisms. Lecture Notes in Mathematics 470. Berlin-Heidelberg-New York: Springer 1975Google Scholar
  4. 4.
    Dunford, N., Schwartz, J. T.: Linear operators Part 1. New York-London: Interscience 1958Google Scholar
  5. 5.
    Friedman, N. A., Ornstein, D. S.: On the isomorphism of weak Bernoulli transformations. Advances Math.5, 365–394 (1970)Google Scholar
  6. 6.
    Keane, M.: Strongly mixingg-measures. Inventiones math.16, 309–324 (1972)Google Scholar
  7. 7.
    Lasota, A., Yorke, J. A.: On the existence of invariant measures for piecewise monotonic transformations. Trans. Amer. math. Soc.186, 481–488 (1973)Google Scholar
  8. 8.
    Ledrappier, F.: Principe variationnel et systèmes symboliques. Commun. math. Phys.33, 119–128 (1973)Google Scholar
  9. 9.
    Parry, W.: On the β-expansion of real numbers. Acta math. Acad. Sci. Hungar.11, 401–416 (1960)Google Scholar
  10. 10.
    Parry, W.: On Rohlin's formula for entropy. Acta math. Acad. Sci. Hungar.15, 107–113 (1964)Google Scholar
  11. 11.
    Renyi, A.: Representations for real numbers and their ergodic properties. Acta math. Acad. Sci. Hungar.8, 477–493 (1957)Google Scholar
  12. 12.
    Rohlin, V. A.: Lectures on the entropy theory of transformations with an invariant measures. Uspehi mat. Nauk22 no. 5, 3–56 (1967). Russ. math. Surveys22, 1–52 (1967)Google Scholar
  13. 13.
    Ruelle, D.: Statistical mechanics of a one-dimensional lattice gas. Commun. math. Phys.9, 267–278 (1968)Google Scholar
  14. 14.
    Ruelle, D.: Statistical mechanics on a compact set withZ ν action satisfying expansiveness and specification. Trans. Amer. math. Soc.185, 237–252 (1973)Google Scholar
  15. 15.
    Sinai, Ja. G.: Gibbs measures in ergodic theory. Russ. math. Surveys166, 21–69 (1972)Google Scholar
  16. 16.
    Smorodinsky, M.: β-automorphisms are Bernoulli shifts. Acta math. Acad. Sci. Hungar.24, 273–278 (1972)Google Scholar
  17. 17.
    Takahashi, Y.: Isomorphism of β-automorphisms to Markov automorphisms. Osaka J. Math.10, 175–184 (1973)Google Scholar
  18. 18.
    Walters, P.: A variational principle for the pressure of continuous transformations. Amer. J. Math.97, 937–971 (1973)Google Scholar
  19. 19.
    Walters, P.: Ruelle's operator theorem andg-measures. Trans. Amer. math. Soc.214, 375–387 (1975)Google Scholar
  20. 20.
    Walters, P.: Invariant measures and equilibrium states for some mappings which expand distances. Trans. Amer. math. Soc. (to appear)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Peter Walters
    • 1
  1. 1.Mathematics DepartmentUniversity of WarwickCoventryEngland

Personalised recommendations