Advertisement

Mathematische Zeitschrift

, Volume 159, Issue 1, pp 37–45 | Cite as

On 2-adicL-functions and cyclotomic invariants

  • Ralph Greenberg
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brown, K.: Euler characteristics of discrete groups andG-spaces. Inventiones math.27, 229–264 (1974)Google Scholar
  2. 2.
    Brumer, A.: On the units of algebraic number fields. Mathematika, London14, 121–124 (1967)Google Scholar
  3. 3.
    Coates, J., Lichtenbaum, S.: On ℓ-adic zeta functions. Ann. of Math. II. Ser.98, 498–550 (1973)Google Scholar
  4. 4.
    Ferrero, B.: The cyclotomicZ 2-extension of imaginary quadratic fields. To appearGoogle Scholar
  5. 5.
    Ferrero, B.: Iwasawa invariants of abelian number fields. To appear in Math. Ann.Google Scholar
  6. 6.
    Greenberg, R.: Onp-adicL-functions and cyclotomic fields. Nagoya math. J.56, 61–77 (1974)Google Scholar
  7. 7.
    Greenberg, R.: Onp-adicL-functions and cyclotomic fields II. Nagoya math. J.67, 139–158 (1977)Google Scholar
  8. 8.
    Iwasawa, K.: Lectures onp-adicL-functions. Annals of Mathematics Studies 74. Princeton, N.J.: Princeton University Press 1972Google Scholar
  9. 9.
    Iwasawa, K.: OnZ -extensions of algebraic Number Fields, Ann. of Math. II. Ser.98, 246–326 (1973)Google Scholar
  10. 10.
    Serre, J.P.: Cohomologie des groupes discrets. In: Hirzebruch, F. et al.: Prospects in Mathematics. Annals of Mathematics Studies70, pp. 77–169. Princeton, N.J.: Princeton University Press 1971Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Ralph Greenberg
    • 1
  1. 1.Brandeis UniversityWalthamUSA

Personalised recommendations