Advertisement

Acta Mechanica

, Volume 120, Issue 1–4, pp 31–45 | Cite as

Singular stress and electric fields of a piezoelectric ceramic strip with a finite crack under longitudinal shear

  • Y. Shindo
  • K. Tanaka
  • F. Narita
Original Papers

Summary

Following the theory of linear piezoelectricity, we consider the problem of determining the singular stress and electric fields in an orthotropic piezoelectric ceramic strip containing a Griffith crack under longitudinal shear. The crack is situated symmetrically and oriented in a direction parallel to the edges of the strip. Fourier transforms are used to reduce the problem to the solution of a pair of dual integral equations. The solution of the dual integral equations is then expressed in terms of a Fredholm integral equation of the second kind. Numerical values on the stress intensity factor and the energy release rate for piezoelectric ceramics are obtained, and the results are graphed to display the influence of the electric field.

Keywords

Fourier Transform Integral Equation Fluid Dynamics Release Rate Stress Intensity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Shindo, Y., Ozawa, E., Nowacki, J. P.: Singular stress and electric fields of a cracked piezoelectric strip. Int. J. Appl. Electromagn. Mater.1, 77–87 (1990).Google Scholar
  2. [2]
    Shindo, Y., Ozawa, E.: Dynamic analysis of a cracked piezoelectric material. In: Mechanical modelling of new electromagnetic materials (Hsieh, R. K. T., ed.), pp. 297–304. IUTAM Symposium, Stockholm, Sweden 1990. Amsterdam, New York, Oxford, Tokyo: Elsevier 1990.Google Scholar
  3. [3]
    Pak, Y. E.: Crack extension force in a piezoelectric material. ASME J. Appl. Mech.57, 647–653 (1990).Google Scholar
  4. [4]
    Pak, Y. E.: Linear electro-elastic fracture mechanics of piezoelectric materials. Int. J. Fract.54, 79–100 (1991).Google Scholar
  5. [5]
    Sosa, H. A.: Crack problems in piezoelectric ceramics. In: ASME mechanics of electromagnetic materials and structures (Lee, J. S., Maugin, G. A., Shindo, Y., eds.), pp. 63–75. AMD-Vol. 161, MD-Vol. 42, 1993.Google Scholar
  6. [6]
    Pak, Y. E., Tobin, A.: On electric field effects in fracture of piezoelectric materials. In: ASME mechanics of electromagnetic materials and structures (Lee, J. S., Maugin, G. A., Shindo, Y., eds.), pp. 51–62. AMD-Vol. 161, MD-Vol. 42, 1993.Google Scholar
  7. [7]
    Park, S. B., Sun, C. T.: Effect of electric field on fracture of piezoelectric ceramics. Int. J. Fract.70, 203–216 (1995).Google Scholar
  8. [8]
    Park, S. B., Sun, C. T.: Fracture criteria for piezoelectric ceramics. J. Am. Ceram. Soc.78, 1475–1480 (1995).Google Scholar
  9. [9]
    Pohanka, R. C., Smith, P. L.: Recent advances in piezoelectric ceramics. In: Electronic ceramics. Levinson, L. M., ed., pp. 45–145. New York: Marcel Dekker 1988.Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Y. Shindo
    • 1
  • K. Tanaka
    • 1
  • F. Narita
    • 1
  1. 1.Department of Materials ProcessingTohoku UniversitySendai, MiyagiJapan

Personalised recommendations