Mathematische Zeitschrift

, Volume 183, Issue 4, pp 473–481 | Cite as

Some topological properties of Kähler manifolds and homogeneous spaces

  • Willi Meier
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blanchard, A.: Sur les variétés analytiques complexes. Ann. Sci. Ecole Norm. Sup.73, 157–202 (1957)Google Scholar
  2. 2.
    Borel, A.: Kählerian coset spaces of semisimple Lie groups. Proc. Nat. Acad. Sci. USA,40, 1147–1151 (1954)Google Scholar
  3. 3.
    Borel, A.: Seminar on Transformation groups. Ann. of Math. Studies, 46, Princeton: Princeton University Press 1960Google Scholar
  4. 4.
    Baum, P.: On the cohomology of homogeneous spaces. Topology7, 15–38 (1968)Google Scholar
  5. 5.
    Brewster, S.: Automorphisms of the cohomology ring of finite Grassmann manifolds. Ph.D. dissertation, Ohio State University 1978Google Scholar
  6. 6.
    Burghelea, D.: The rational homotopy groups of Diff(M) and Homeo(M) in the stability range. In: Proceedings of a conference on Algebraic Topology (Aarhus 1978), pp. 604–626. Lecture Notes in Math.763. Berlin-Heidelberg-New York: Springer 1979Google Scholar
  7. 7.
    Burghelea, D., Lashof, R.: Geometric transfer and the homotopy type of the automorphism groups of manifolds. Trans. Amer. Math. Soc.269, 1–38 (1982)Google Scholar
  8. 8.
    Glover, H., Homer, W.: Self-Maps of Flag Manifolds. Trans. Amer. Math. Soc.267, 423–434 (1981)Google Scholar
  9. 9.
    Gottlieb, D.: On Fibre spaces and the evaluation map. Ann. of Math.87, 42–55 (1968)Google Scholar
  10. 10.
    Gottlieb, D.: Witnesses, transgressions and the evaluation map. Indiana Univ. Math. J.24, 825–836 (1975)Google Scholar
  11. 11.
    Griffiths, P., Harris, J.: Principles of Algebraic Geometry. New York: Wiley and Sons 1978Google Scholar
  12. 12.
    Halperin, S.: Finiteness in the minimal models of Sullivan. Trans. Amer. Math. Soc.230, 173–199 (1977)Google Scholar
  13. 13.
    Hatcher, A.: Higher simple homotopy theory. Ann. of Math.102, 101–137 (1975)Google Scholar
  14. 14.
    Hsiang, W., Staffeldt, R.: Rational AlgebraicK-theory of a product of Eilenberg-MacLane spaces. PreprintGoogle Scholar
  15. 15.
    Liulevicius, A.: Flag Manifolds and Homotopy Rigidity of Linear Actions, In: Proceedings of a conference on Algebraic Topology (Vancouver 1977), pp. 254–261. Lecture Notes in Math.673. Berlin-Heidelberg-New York: Springer 1978Google Scholar
  16. 16.
    Meier, W.: Rational Universal Fibrations and Flag Manifolds. Math. Ann.258, 329–340 (1982)Google Scholar
  17. 17.
    Scheerer, H.: Arithmeticity of groups of fibre homotopy equivalence classes. PreprintGoogle Scholar
  18. 18.
    Sullivan, D.: Infinitesimal computations in topology. Inst. Hautes Études Sci. Publ. Math.47, 269–331 (1978)Google Scholar
  19. 19.
    Waldhausen, F.: AlgebraicK-theory of topological spaces, I. Proc. Sympos. Pure Math.32, 35–60 (1978)Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Willi Meier
    • 1
  1. 1.Mathematik V der UniversitätSiegen 21Federal Republic of Germany

Personalised recommendations