Advertisement

Mineralogy and Petrology

, Volume 61, Issue 1–4, pp 67–96 | Cite as

Variscan granitoids of central Europe: their typology, potential sources and tectonothermal relations

  • F. Finger
  • M. P. Roberts
  • B. Haunschmid
  • A. Schermaier
  • H. P. Steyrer
Article

Summary

During the Variscan orogenic cycle, central Europe was intruded by numerous granitoid plutons. Typological and age relationships show that the characteristics of the granitoid magmatism changed during the course of the Variscan orogeny. Five genetic groups of granitoids may be distinguished:
  1. 1.

    Late Devonian to early Carboniferous “Cordilleras” I-type granitoids (ca. 370-340 Ma): These early Variscan granitoids are mainly tonalites and granodiorites. They often have hornblende and occur in association with diorites and gabbros. They form plutonic massifs in the Saxothuringian unit, in Central Bohemia and the intra-Alpine Variscides. In terms of existing models, they can be interpreted as volcanic arc granites, being related to the subduction of early Variscan oceans. Models involving mantle sources and AFC may be feasible.

     
  2. 2.

    Early Carboniferous, deformed S-type granite/migmatite associations (ca. 340 Ma): These occur in the footwall of a thick thrust in Southern Bohemia (Gföhl nappe) and seem to represent a phase of water-present, syn-collisional crustal melting related to nappe stacking.

     
  3. 3.

    Late Visean and early Namurian S-type and high-K, I-type granitoids (ca. 340-310 Ma): These granitoids are mainly granitic in composition and particularly abundant along the central axis of the orogen (Moldanubian unit). This zone experienced a high heat flow at this time, probably as a consequence of post-collisional extension and magmatic underplating. Most of group 3 granitoids formed through high-T fluid-absent melting in the lower crust. Enriched mantle melts interacted with some crustal magmas on a local scale to form durbachites. Partial melting events in the middle crust produced a number of high-T/low-P, S- and I-type diatexites and some S-type granite magmas.

     
  4. 4.

    Post-collisional, epizonal I-type granodiorites and tonalites (ca. 310-290 Ma): These plutons can be found throughout the Central European Variscides. However, most of them occur in the Alps (near the southern flank of the orogen). Such late I-type plutons could be related to renewed subduction along the southern fold belt flank, and/or to extensional decompression melting near the crust/mantle boundary. Post-collisional mantle or slab melting may have occurred in connection with remnant subduction zones below the orogen undergoing thermal relaxation and dehydration.

     
  5. 5.

    Late Carboniferous to Permian leucogranites (ca. 300-250 Ma): Many of these rocks are similar to sub-alkaline A-type granites. Potential sources for this final stage of plutonism could have been melt-depleted lower crust or lithospheric mantle.

     

Keywords

Subduction Orogen Late Carboniferous Early Carboniferous Magmatic Underplating 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Die variszischen granitoide mitteleuropas: Typologie, potentielle quellen und tektonothermische Zusammenhänge

Zusammenfassung

Im Verlauf der variszischen Orogenese intrudierten im mitteleuropäischen Raum große Massen von Granitoiden. Eine Bewertung geochronologischer and granittypologischer Daten zeigt, daß sich die Magmencharakteristik mit der Zeit verändert hat. Fünf Hauptgruppen von Granitoiden können unterschieden werden:
  1. 1.

    I-Typ Granitoide des sädten Devon and fruhen Karbon (ca. 370-340 Ma): Es handelt sich dabei durchwegs um I-Typ Tonalite and Granodiorite, welche häufig Hornblende fühen. Typisch für these Plutone ist die Präsenz gabbroischer oder dioritischer Endglieder. Eine Magmenentstehung aus Mantelquellen mit Modifikation durch AFC und eine genetische Verbindung zu frühvariszischen Subduktionszonen ist denkbar.

     
  2. 2.

    Syntektonische S-Typ Granite and Migmatite (ca. 340 Ma): Große Massen solcher Granitoide treten im Deckenstapel der südlichen Böhmischen Masse auf. Sie repräsentieren wassergesättigte, syn-kollisionale Krustenschmelzen, die sich in der Nähe von tektonischen Überschiebungsbahnen gebildet haben.

     
  3. 3.

    S-Typ and kalireiche L-Typ Granitoide des spdten Vise and fruhen Namur (ca. 340-310 Ma): Diese Plutone haben in der Regel granitische Zusammensetzung und intrudierten vornehmlich in der moldanubischen Zentralzone des Orogens. Die dortige kontinentale Kruste war zu dieser Zeit einem extrem hohen Wärmefluß ausgesetzt, der vermutlich durch postkollisionale Extension mit rascher Krustenhebung und magmatischem „underplating” verursacht wurde. Die meisten dieser Granite bildeten sich durch Dehydratationsschmelzen der Unterkruste aus Paragneisen und eventuell auch intermediären kaliumreichen Orthogneisen. Einige wenige Plutone zeigen Interaktionen mit mafischen Magmen, die aus einem angereicherten Lithosphärenmantel stammen (Durbachite). Schmelzprozesse in der mittleren Kruste führten weiträumig zur Bildung von Migmatiten mit grßgen Anteilen an S-Typ and I-Typ Diatexiten.

     
  4. 4.

    Postkollisionale, epizonale I-Typ Granodiorite and Tonalite (ca. 310-290 Ma): Die Hauptverbreitung dieser Plutone liegt in den Alpen. Eine genetische Verbindung zu einer spätvariszischen Subduktionszone am Variszikums-Siidrand erscheint möglich. Andererseits könnte auch die bloße Reaktivierung and Dehydratation von alten (frühvariszischen) Subduktionszonen unter dem Orogen die Produktion entsprechender I-Typ Magmen bewirkt haben, ebenso wie ein postkollisionales Druckentlastungsschmelzen von I-Typ Quellen im Bereich der Krusten-Mantel Grenze ohne Subduktionzusammenhang.

     
  5. 5.

    Leukogranite des sädten Karbon and Perm (ca. 300-250 Ma): Viele dieser Plutone zeigen Eigenschaften von A-Typ Graniten. Die entsprechenden Magmen sind vermutlich durch Schmelzprozesse in einer restitischen Unterkruste oder im lithosphärischen Mantel entstanden.

     

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson TA (1975) Carboniferous subduction complex in the Harz Mountains, Germany. Geol Soc Am Bull 86: 77–82Google Scholar
  2. Arthaud F, Matte P (1977) Late Paleozoic strike-slip faulting in southern Europe and northern Africa: result of a right-lateral shear-zone between the Appalachians and the Urals. Geol Soc Am Bull 88: 1305–1320Google Scholar
  3. Atherton MP, Petford N (1993) Generation of sodium-rich magmas from newly underplated basaltic crust. Nature 362: 144–146Google Scholar
  4. Baumann A, Grauert B, Mecklenburg S, Vinx R (1991) Isotopic age determinations of crystalline rocks of the Upper Harz Mountains, Germany. Geol Rundsch 80: 669–690Google Scholar
  5. Blümel P, Schreyer W (1976) Progressive regional low-pressure metamorphism in Moldanubian metapelites of the northern Bavarian Forest, Germany. Krystallinikum 12: 7–30Google Scholar
  6. Bonin B (1992) The role of crust in the development of A-type alkali-feldspar granites in within-plate bimodal alkaline magmatism. Ind Geol Assoc Bull 25: 11–27Google Scholar
  7. Bonin B, Brdndlein P, Bussy F, Desmons J, Eggenberger U, Finger F, Graf K, Marro C, Mercolli I, Oberhansli R, von Quadt A, von Raumer J, Schaltegger U, Steyrer H P, Visona D, Vivier G (1993) Late Variscan magmatic evolution of the Alpine basement. In:von Raumer JF, Neubauer F (eds) The pre-Mesozoic geology in the Alps. Springer, Berlin Heidelberg New York Tokyo, pp171–202Google Scholar
  8. Breiter K, Seibel W (1995) Granitoids in the Rozvadov Pluton Southern Bohemia and Oberpfalz. Geol Rundsch 84: 506–519Google Scholar
  9. Broska I, Gerdes A, Haunschmid B, Schindlmayr AO, Finger F (1995) Magma temperatures in the Southern Bohemian Batholith estimated on the basis of zircon solubility. Terra Nova 7 [Suppl 1]: 143Google Scholar
  10. Brown GC (1981) Space and time in granite plutonism. Phil Trans Roy Soc Lond A301: 321–336Google Scholar
  11. Brown GC, Thorpe RS, Webb PC (1984) The geochemical characteristics of granitoids in contrasting arcs and comments on magma sources. J Geol Soc Lond 141: 413–426Google Scholar
  12. Büchi HJ (1994) Der variskische Magmatismus in der östlichen Bernina (Graubunden, Schweiz). Schweiz Mineral Petrograph Mitt 74: 361–364Google Scholar
  13. Büttner S, Kruhl JH (1997) The evolution of a late-Variscan high-T/low-P region: the south-eastern margin of the Bohemian Massif. Geol Rundsch 86: 21–38Google Scholar
  14. Chappell BW, White AJR (1974) Two contrasting granite types. Pacific Geol 8: 173–174Google Scholar
  15. Choubert G, Faure-Muret A (1980) Atlas géologique du monde feuille 9 (scale 1 10 000 000). Int Geol Congr ParisGoogle Scholar
  16. Clemens JD, Vielzeuf D (1987) Constraints on melting and magma production in the crust. Earth Planet Sci Lett 86: 287–306Google Scholar
  17. Cliff RA (1981) Pre-Alpine history of the Pennine zone in the Tauern window Austria: U-Pb and Rb-Sr geochronology. Contrib Mineral Petrol 77: 101–104Google Scholar
  18. Collins WJ, Beams SD, Chappell BW, White AJR (1982) Nature and origin of A-type granites with particular reference to south-eastern Australia. Contrib Mineral Petrol 80: 189–200Google Scholar
  19. Conrad WK, Nicholls IA, Wall VJ (1988) Water-saturated and -undersaturated melting of metaluminous and peraluminous crustal compositions at 10 kbar: evidence for the origin of silicic magmas in the Taupo Volcanic Zone New Zealand and other occurrences. J Petrol 29: 765–803Google Scholar
  20. DePaolo DJ (1981) Neodymium isotopes in the Colorado Front Range and crust-mantle evolution in the Proterozoic. Nature 291: 193–196Google Scholar
  21. Eby GN (1990) The A-type granitoids: a review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos 26: 115–134Google Scholar
  22. Edel JB, Weber K (1995) Cadomian terranes, wrench faulting and thrusting in the central European Variscides: geophysical and geological evidence. Geol Rundsch 84: 412–432Google Scholar
  23. Eichhorn R, Schdrer U, Jagoutz E, Höll R (1993) Die Scheelit-Lagerstatte Felbertal - das Alter der Vererzung und der metamorphen Uberpragungen. Ber Dtsch Mineral Ges 5/1: 122Google Scholar
  24. Emmermann R (1977) A petrogenetic model for the origin and evolution of the Hercynian granite series of the Schwarzwald. N Jb Mineral Abh 128: 219–253Google Scholar
  25. England P, Thompson AB (1984) Pressure-temperature-time paths of regional metamorphism 1. Heat transfer during the evolution of regions of thickened continental crust. J Petrol 25: 894–928Google Scholar
  26. Finger F (1986) Die synorogenen Granitoide und Gneise des Moldanubikums im Gebiet der Donauschlingen bei Obermuhl (Oberbsterreich). Jb Geol Bundesanst 128: 383–402Google Scholar
  27. Finger F, Steyrer HP (1988) Granite-types in the Hohe Tauern (Eastern Alps Austria) - some aspects on their correlation to Variscan plate tectonic processes. Geodinam Acta 2: 75–87Google Scholar
  28. Finger F, Steyrer HP (1990) I-type granitoids as indicators of a late-Paleozoic convergent ocean-continent margin along the southern flank of the Central European Variscan orogen. Geology 18: 1207–1210Google Scholar
  29. Finger F, Steyrer H P (1991) Comments and replies on “I-type granitoids as indicators of a late Paleozoic convergent ocean-continent margin along the southern flank of the central Variscan orogen”. Geology 20: 1245–1248Google Scholar
  30. Finger F, von Quadt A (1993) Genauere U/Pb Alter fur Granitgneise durch sorgfaltige Zirkonselektion unter dem Durchlichtmikroskop - Der Knorrkogelgneis der Hohen Tauern als Beispiel. Ber Deutsch Mineral Ges 5/1: 118Google Scholar
  31. Finger F, Clemens JD (1995) Migmatization and “secondary” granitic magmas: effect of emplacement and crystallization of “primary” granitoids in Southern Bohemia, Austria. Contrib Mineral Petrol 120: 311–326Google Scholar
  32. Finger F, Steyrer HP (1995) A tectonic model for the eastern Variscides: indications from a chemical study of amphibolites in the south-eastern Bohemian Massif. Geol Carpath 46: 137–150Google Scholar
  33. Finger F, Kraiger H, Steyrer HP (1985) Zur Geochemie des Kl-Gneises der Scheelitlagerstatte Felbertal (Pinzgau/Salzburg) - ein Vorbericht. Karinthin 92: 225–235Google Scholar
  34. Finger F Frasl G, Haunschmid B, Leaner H, von Quadt A, Schermaier A, Schindlmayr AO, Steyrer HP (1993) The Zentralgneise of the Tauern window (Eastern Alps): insight into an intra-Alpine Variscan batholith. In:von Raumer JF, Neubauer F (eds) The pre-Mesozoic geology in the Alps. Springer, Berlin Heidelberg New York, pp 375–392Google Scholar
  35. Franke W (1989) Tectonostratigraphic units in the Variscan belt of central Europe. Geol Soc Am Spec Pap 230: 67–87Google Scholar
  36. Frasl G, Finger F (1988) The “Cetic Massif” below the Eastern Alps - characterized by its granitoids. Schweiz Mineral Petrograph Mitt 68: 433–439Google Scholar
  37. Frasl G, Finger F (1991) Geologisch-petrographische Exkursion in den osterreichischen Teil des Sudbohmischen Batholiths. Eur J Mineral 3/2: 23–40Google Scholar
  38. Friedl G (1997) U/Pb-Datierungen an Zirkonen und Monaziten aus Gesteinen vom österreichischen Anteil der Bohmischen Masse. Thesis, University of Salzburg, pp 242Google Scholar
  39. Friedl G, Frasl G, von Quadt A, Finger F (1992) Neue U/Pb Altersdaten aus der sudlichen Bohmischen Masse. Frankfurter Geowiss Arb A11: 217Google Scholar
  40. Friedl G, von Quadt A, Ochsner A, Finger F (1993) Timing of the Variscan orogeny in the Southern Bohemian Massif (NE-Austria) deduced from new U-Pb zircon and monazite dating. Terra Abstr 5/1: 235–236Google Scholar
  41. Friedl G, von Quadt A, Finger F (1996) Timing der Intrusionstdtigkeit im Sudbohmischen Batholith. In:Amann G, Handler R, Kurz W Steyrer HP (eds) 6 Symposium Tektonik -Strukturgeologie - Kristallingeologie, Salzburg 1996. Extended Abstracts, pp 127-130Google Scholar
  42. Frisch W Neubauer F (1989) Pre-Alpine terranes and tectonic zoning in the Eastern Alps. Geol Soc Am Spec Pap 230: 91–100Google Scholar
  43. Gerdes A (1997) Geochemische and thermische Modelle zur Frage der spätorogenen Granitgenese am Beispiel des Sudbohmischen Batholiths: Basaltisches Underplating oder Krustenstapelung. Thesis, University of Göttingen, pp 113Google Scholar
  44. Gerdes A, Worner G, Finger F (1995) Quellen und Prozesse der Genese des Sudbohmischen Batholiths. Terra Nova 95/8: 97Google Scholar
  45. Harris NBW Pearce JA, Tindle AG (1984) Geochemical characteristics of collision-zone magmatism. In:Ries AC, Coward MP (eds) Collision tectonics. Geol Soc Lond Spec Pub 19: 67–81Google Scholar
  46. Haunschmid B (1989) Das Granitgebiet um Plochwald zwischen Sandl und Windhaag im nordöstlichen Oberösterreich mit besonderer Berucksichtigung des dortigen Plochwalder Granit-Typs und des Pseudokinzigits. Thesis, University of Salzburg, pp 168Google Scholar
  47. Haunschmid B (1993) Zentralgneisgenerationen im östlichen Tauernfenster - Geologie, Petrographie, Zirkontypologie, Geochemie. Thesis, University of Salzburg, pp 159Google Scholar
  48. Haunschmid B, Finger F (1994) Der Quarzmonzodiorit von Sarleinsbach eine Kumulatvariante des Weinsberger Granits. Mitt Österr Mineral Gesell 139: 310–312Google Scholar
  49. Henes-Klaiber U (1989) Der Odenwald: Hinweise auf einen variszischen ArcMagmatismus? Beih Eur Jb Mineral 1: 166Google Scholar
  50. Henes-Klaiber U (1992) Zur Geochemie der variszischen Granitoide des Bergsträsser Odenwalds. Thesis, University of Karlsruhe, pp 264Google Scholar
  51. Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of Central Chile. Contrib Mineral Petrol 98: 455–489Google Scholar
  52. Holl A, Altherr R (1987) Hercynian I-type granitoids of northern Vosges: documents of increasing arc maturity. Terra Cognita 7: 174Google Scholar
  53. Holub FV (1977) Petrology of inclusions as a key to petrogenesis of the durbachitic rocks from Czechoslovakia. Tschermaks Mineral Petrogr Mitt 24: 133–150Google Scholar
  54. Holub FV, Rossi P, Cocherie A (1997) Radiometric dating of granitic rocks from the Central Bohemian Plutonic Complex (Czech Republic): constraints on the chronology of thermal and tectonic events along the Modanubian-Barrandian boundary. CR Acad Sci Paris 325: 19–26Google Scholar
  55. Janousek V, Rogers G, Bowes DR (1995) Sr-Nd isotopic constraints on the petrogenesis of the Central Bohemian Pluton, Czech Republic. Geol Rundsch 84: 520–534Google Scholar
  56. Kirsch H, Koser B, Lippolt HJ (1988) Age of intrusion and rapid cooling of the Frankenstein gabbro (Odenwald, SW-Germany) evidenced by Ar40/Ar39 and single zircon Pb207/Pb209 measurements. Geol Rundsch 77: 693–711Google Scholar
  57. Knop E, Biittner S, Haunschmid B, Finger F, Mirwald PW (1995) P-T conditions of Variscan metamorphism and migmatization in the Sauwald, southern Bohemian Massif. Terra Nova 7/1: 316Google Scholar
  58. Kosler J, McFarrow CM (1994) Mid-late Devonian arc-type magmatism in the Bohemian Massif: Sr and Nd isotope and trace element evidence from the Stare Sedlo and Mirotice Gneiss Complexes, Czech Republic. J Czech Geol Soc 39: 56–58Google Scholar
  59. Kosler J, Aftalion M, Bowes DR (1993) Mid-late Devonian plutonic activity in the Bohemian Massif: U-Pb zircon isotopic evidence from the Stare Sedlo and Mirotice gneiss complex, Czech Republic. N Jb Mineral Abh 9: 417–431Google Scholar
  60. Kraus G (1962) Gefuge, Kristallgrößen and Genese des Kristallgranits 1 im vorderen Bayrischen Wald. N Jb Mineral Abh 97: 357–434Google Scholar
  61. Kretz R (1983) Symbols for rock-forming minerals. Am Mineral 68: 277–279Google Scholar
  62. Kröner A, Hegner E, Hammer J, Haase G, Bielicki K-H, Krauss M, Eidam J (1994) Geochronology and Nd-Sr systematics of Lusitian granitoids: significance for the evolution of the Variscan orogen in east-central Europe. Geol Rundsch 83: 357–376Google Scholar
  63. Langer C, Hegner E, Altherr R, Satir M, Henes-Kunst F (1995) Carboniferous granitoids from the Odenwald, the Schwarzwald and the Vosges - constraints on magma sources. Terra Nostra 95/8: 114Google Scholar
  64. Linner M (1992) Metamorphose der Paragneise in der Monotonen Serie (SE Moldanubikum). Thesis, University of ViennaGoogle Scholar
  65. Liew TC, Hofmann AW (1988) Precambrian crustal components, plutonic associations, plate environment of the Hercynian Fold Belt of Central Europe: indications from a Nd and Sr isotopic study. Contrib Mineral Petrol 98: 129–138Google Scholar
  66. Liew TC, Finger F, Hdck V (1989) The Moldanubian granitoids of Austria: chemical and isotopic studies bearing on their environmental setting. Chem Geol 76: 41–55Google Scholar
  67. Lorenc MW (1994) Rola magm zasadowych w ewolucji intruzji granitoidowych (studium porownawcze wybranych masywow Hercynskich). Geol Sudetica 28: 3–130Google Scholar
  68. Matejka D, Klecka M (1992) Petrogenese und geodynamische Stellung des Moldanubischen Batholiths, Böhmische Masse. Rundgesprdch 8: 49Google Scholar
  69. Matte P (1986) Tectonics and plate tectonics model for the Variscan Belt of Europe. Tectonophysics 126: 329–374Google Scholar
  70. Mehnert KR (1968) Migmatites and the origin of granitic rocks. Elsevier, New York, pp 393Google Scholar
  71. Neubauer F (1991) Comment on “I-type granitoids as indicators of a late-Paleozoic convergent ocean-continent margin along the southern flank of the Central European Variscan orogen”. Geology 19: 1246Google Scholar
  72. Neubauer F (1994) Kontinentkollision in den Ostalpen. Geowissensch 12: 136–140Google Scholar
  73. Neugebauer J (1988) The Variscan plate tectonic evolution: an improved “Iapetus model” Schweiz Mineral Petrogr Mitt 68; 313–333Google Scholar
  74. Nicolas A (1972) Was the Hercynian orogenic belt of Europe of the Andean type? Nature 236:221–223Google Scholar
  75. O'Brien PJ, Carswell DA (1993) Tectonometamorphic evolution of the Bohemian Massif: evidence from high pressure metamorphic rocks. Geol Rundsch 82: 531–555Google Scholar
  76. Patiño-Douce AE, Johnston AD (1991) Phase equilibria and melt productivity in the pelitic system: implications for the origin of peraluminous granitoids and aluminous granulites. Contrib Mineral Petrol 107: 202–218Google Scholar
  77. Peacock SM, Rushmer T, Thompson AB (1994) Partial melting of subducting oceanic crust. Earth Planet Sci Lett 121: 227–244Google Scholar
  78. Pearce JA, Harris NBW Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25: 956–983Google Scholar
  79. Petrik I, Broska I, Uher P (1994) Evolution of the Western Carpathian granite magmatism: age source rock, geotectonic setting and relation to the Variscan structure. Geol Carpath 45: 283–29Google Scholar
  80. Pin C (1990) Variscan oceans, ages, origins and geodynamic implications inferred from geochemical and radiometric data. Tectonophysics 177: 215–227Google Scholar
  81. Pin C, Puziewicz J, Duthou JL (1989) Ages and origins of a composite granite massif in the Variscan belt: a Rb-Sr study of the Strzegom-Sobotka Massif, W Sudetes (Poland). N Jb Mineral Abh 160: 71–82Google Scholar
  82. Pitcher WS (1983) Granite types and tectonic environment. In:Hsu K (ed) Mountain building processes. Academic Press, London, pp 19–40Google Scholar
  83. Roberts MP, Clemens JD (1993) Origin of high-potassium, calc-alkaline, I-type granitoids. Geology 21: 825–828Google Scholar
  84. Schaltegger U (1990) The Central Aar granite: highly differentiated calc-alkaline magmatism in the Aar Massif (Central Alps, Switzerland). Eur J Mineral 2: 254–259Google Scholar
  85. Schaltegger U (1994) Unravelling the pre-Mesozoic history of Aar and Gotthard massifs (Central Alps) by isotopic dating - a review. Schweiz Mineral Petrogr Mitt 74: 41–51Google Scholar
  86. Schaltegger U (1995) High-resolution chronometry of late Variscan extensional magmatism and basin formation: examples from the Vosges, Black Forest and the Alpine basement. Terra Nostra 7/95: 109–111Google Scholar
  87. Schaltegger U, Corfu F (1992) The age and source for late Hercynian magmatism in the Central Alps: evidence from precise U-Pb ages and initial Hf isotopes. Contrib Mineral Petrol 111: 329–344Google Scholar
  88. Schaltegger U, Corfu F (1995) Late Variscan “Basin and Range” magmatism and tectonics in the Central Alps: evidence from U-Pb geochronology. Geodinam Acta 8: 82–98Google Scholar
  89. Schaltegger U, Gnos E, Kiipfer T, Labhart TP (1991) Geochemistry and tectonic significance of late Hercynian potassic and ultrapotassic magmatism in the Aar Massif (Central Alps). Schweiz Mineral Petrogr Mitt 71: 391–403Google Scholar
  90. Scharbert S (1987) Rb-Sr Untersuchungen granitoider Gesteine des Moldanubikums in Osterreich. Mitt Osterr Mineral Gesell 132: 21–37Google Scholar
  91. Schermaier A (1991) Geologisch-petrographische Untersuchungen zur praalpidischen Entwicklung des Tauernfensters am Ostrand des Venedigermassivs (Hohe Tauern). Jb Geol Bundesanst 135: 746–750Google Scholar
  92. Schermaier A (1993) Gliederung der Zentralgneise im mittleren and westlichen Tauernfenster. Geologie — Petrographie — Zirkontypologie — Geochemie. Thesis, University of Salzburg, pp 174Google Scholar
  93. Schermaier A, Haunschmid B, Finger F (1997) Distribution of I- and S-type granites in the eastern Alps: a possible clue to unravel pre-Alpine basement structures. Tectonophysics 272:315–333Google Scholar
  94. Scotese CR (1984) Paleozoic paleomagnetism and the assembly of Pangea. In:van der Voo R, Scotese CR, Bonhommet N (eds) Plate reconstruction from Paleozoic paleomagnetism. Am Geophys Union Geodynam Srs 12: 1–10Google Scholar
  95. Siebel W (1994) Geochemical and isotopic (Sr Nd) investigations of NE Bavarian granitoids: a comparison between the Fichtelgebirge and the northern Oberpfalz. Rundgesprach 10: 22–24Google Scholar
  96. Siebel W (1995a) Constraints on Variscan granite emplacement in north-eastern Bavaria, Germany: further clues from a petrogenetic study of the Mitterteich granite. Geol Rundsch 84: 384–398Google Scholar
  97. Siebel W (1995b) Anticorrelated Rb-Sr and K-Ar age discordances: Leuchtenberg granite, NE Bavaria, Germany. Contrib Mineral Petrol 120: 197–211Google Scholar
  98. Silver LT, Chappell BW (1988) The Peninsular Ranges Batholith: an insight into the evolution of the Cordilleran batholiths of southwestern North America. Trans Roy Soc Edinburgh Earth Sci 79: 105–121Google Scholar
  99. Spillmann P, Buchi H (1993) The pre-Alpine basement of the Lower Austroalpine nappes in the Bernina Massif (Grisons Switzerland, Valtellina Italy). In:von Raumer JF, Neubauer F (eds) The Pre-Mesozoic geology in the Alps. Springer, Berlin Heidelberg New York Tokyo, pp 457–468Google Scholar
  100. Stemprok M (1994) The Krusne Hory (Erzgebirge) granite batholith. Mitt Osterr Mineral Gesell 139: 374–376Google Scholar
  101. Thiele O (1962) Neue geologische Ergebnisse aus dem Sauwald (OÖ). Verhandl Geol Bundesanst 1962: 117–129Google Scholar
  102. Thompson RN, Morrison MA, Hendry GL, Parry SJ (1984) An assessment of the relative roles of crust and mantle magma genesis: an elemental approach. Phil Trans Roy Soc Lond A310:549–590Google Scholar
  103. Thöni M (1991) Neue Rb/Sr-Daten an Mineralien und Gesteinen des Leopold von BuchDenkmales und am Tonalit von Schaitten. Mitt Gesell Geol Bergbaust Österr 37: 157–162Google Scholar
  104. Todt W (1976) Zirkon-U/Pb-Alter des Malsburg-Granits, Süd-Schwarzwald. N Jb Mineral Monat 12: 532–544Google Scholar
  105. Troll G (1964) Geologische Übersichtskarte des Bayerischen Waldes l: 100000. Geologica Bavarica 58 (enclosure)Google Scholar
  106. Uher P, Pushkarev Y (1994) Granitic pebbles of the Cretaceous flysch of the Pieniny klippen belt, Western Carpathians. Geol Carpath 45: 375–378Google Scholar
  107. Vavra G, Hansen BT (1991) Cathodoluminescence studies and U/Pb dating of zircons in pre-Mesozoic gneisses of the Tauern Window: implications for the Penninic basement evolution. Geol Rundsch 80: 703–715Google Scholar
  108. Vellmer C (1992) Stoffbestand and Petrogenese von Granuliten and granitischen Gesteinen der südlichen Böhmischen Masse in Niederösterreich. Thesis, University of Göttingen, pp 111Google Scholar
  109. Vielzeuf D, Holloway JR (1988) Experimental determination of the fluid-absent melting relations in the pelitic system. Contrib Mineral Petrol 98: 257–276Google Scholar
  110. Vielzeuf D, Montel JM (1994) Partial melting of metagreywackes, part l. Fluid-absent experiments and phase relationships. Contrib Mineral Petrol 117: 375–393Google Scholar
  111. Volker F, Altherr R (1987) Lower Carboniferous calc-alkaline volcanics in the northern Vosges: evidence for a destructive continental margin. Terra Cognita 7: 174Google Scholar
  112. von Blanckenburg F, Davies JH (1995) Slab breakoff: a model for syncollisional magmatism and tectonics in the Alps. Tectonics 14: 120–131Google Scholar
  113. von Quadt A, Finger F (1991) Geochronologische Untersuchungen im osterreichischen Teil des Sudbohmischen Batholiths. U-Pb Datierungen an Zirkonen, Monaziten und Xenotimen des Weinsberger Granits. Eur J Mineral 3 (Beiheft l): 281Google Scholar
  114. vonQuadt A, Griinenfelder M, Biichi H (1994) U-Pb zircon ages from igneous rocks of the Bernina nappe system (Grisons, Switzerland). Schweiz Mineral Petrogr Mitt 74: 373–382Google Scholar
  115. Wenzel T, Mercolli I, Oberhansli R (1991) The plutonic rocks of the Meißen Massif (Germany): evidence for open and closed system fractionation processes. Schweiz Mineral Petrogr Mitt 71: 371–390Google Scholar
  116. White AJR, Chappell BW (1983) Granitoid types and their distribution in the Lachlan Fold Belt, southeastern Australia. In:Roddick JA (ed) Circum Pacific plutonic terranes. Geol Soc Am Mem 159: 21–34Google Scholar

Copyright information

© Springer-Veriag 1997

Authors and Affiliations

  • F. Finger
    • 1
  • M. P. Roberts
    • 1
  • B. Haunschmid
    • 1
  • A. Schermaier
    • 1
  • H. P. Steyrer
    • 2
  1. 1.Institut für MineralogieUniversität SalzburgSalzburgAustria
  2. 2.Institut für Geologie and PaläontologieUniversitat SalzburgSalzburgAustria

Personalised recommendations