Mineralogy and Petrology

, Volume 61, Issue 1–4, pp 1–25 | Cite as

Thermal evolution of the mantle underneath the Mid-German crystalline rise: Evidence from mantle xenoliths from the Rhön area (Central Germany)

  • L. Franz
  • W. Seifert
  • W. Kramer
Article

Summary

A suite of ultramafic xenoliths (spinel peridotites, one olivine-clinopyroxene hornblendite, and one spinel pyroxenite) from Tertiary basalt vents and lava flows of the Rhön area (Central Germany) were investigated petrologically and geochemically. With regard to P-T estimates two distinct groups of peridotite xenoliths can be discriminated: (I) A low- to intermediate-temperature group of spinel lherzolites and wehrlites mainly displaying coarse equant textures yielded temperature estimates in the range of 840–1050 °C at rather variable pressures of 11–24 kbar. The strong variability of the P-T estimates is attributed to mineral chemical disequilibria and different diffusion rates of the elements used for geothermometry and geobarometry. Spinel-pyroxene symplectites within part of these xenoliths point to a former position in the stability field of garnet lherzolite. These xenoliths are variably depleted in the basaltic component by partial melt extraction. They often show an enrichment in LREE and MREE which is due to a later overprinting by cryptic metasomatism. (II) A high-temperature group of xenoliths, which mainly consists of porphyroclastic and subordinate coarse equant spinel lherzolites and harzburgites, experienced temperatures of 1190–1270 °C at 19–26 kbar. The P-T values for these xenoliths fall close to a geothermal gradient of about 90 mW/m2 and illustrate intense heating processes in the mantle which were often coupled with ductile deformation caused by lithospheric stretching. The thermal disturbance which led to the reequilibration of these peridotites must have occurred during the Tertiary magmatic event as indicated by the absence of retrograde mineral zoning, missing textural reequilibration, and the presence of partial melting phenomena in clinopyroxene. Unlike sheared xenoliths from other locations, the porphyroclastic high-temperature peridotites from the Rhön are depleted in basaltic component, in HREE, Y, and Sc. An olivine-clinopyroxene hornblendite is classified as some kind of basaltic cumulate which - according to its P-T estimate of about 1150 °C at 9 kbar - originates from hte transition zone between the lower crust and the upper mantle.40Ar-39Ar dating of kaersutite from this sample indicates an age of about 25 Ma which is in accordance with the beginning of Tertiary volcanism in the Rhön area. These investigations show that part of the lithospheric mantle underneath the Rhön area experienced a thermal reequilibration during the Tertiary magmatic event while other parts give evidence of an older history, i.e. a cryptic metasomatism and a transition from the garnet- to the spinel-lherzolite field. A possible geotectonic scenario for the transition could be the post-Variscan crustal reequilibration.

Thermische Entwicklung des Mantels unter der Mitteldeutschen Kristallinschwelle abgeleitet aus Mantelxenolithen der Rhön

Zusammenfassung

Eine Reihe von ultramafischen Xenolithen (Spinell-Peridotite, ein Olivin-KlinopyroxenHornblendit und ein Spinell-Pyroxenit) aus tertiären Basalten der Rhön wurde petrologisch and geochemisch untersucht. Zwei Gruppen von Peridotiten können hinsichtlich ihrer Äquilibrierungstemperaturen unterschieden werden: (I) Spinell-Lherzolithe and -Wehrlite mit niedrigen und mittleren Temperaturen von 840–1050 °C bei Drucken von 11-24 kbar zeigen zumeist granulare Gefüge. Die große Schwankungsbreite dieser P-T-Abschätzungen ist durch mineralchemische Ungleichgewichte und unterschiedliche Schließungstemperaturen der Geothermometer und Geobarometer bedingt. Spinell-Pyroxen-Symplektite, die in einigen dieser Xenolithe auftreten, weisen auf eine vormalige Position im Stabilitätsfeld von GranatLherzolith hin. Diese Xenolithe sind durch partielle Schmelzextraktion unterschiedlich stark depletiert. Häufig zeigen she eine Anreicherung der leichten and mittleren Seltenerdelemente, was durch eine spätere kryptometasomatische Überprägung bedingt ist. (II) Eine Gruppe hochtemperierter, vorwiegend porphyroklastischer und untergeordnet granularer Spinell-Lherzolithe und -Harzburgite wurde unter Temperaturen von 1190–1270 °C bei Drucken von 19–26 kbar überprägt. Die P-T Werte für diese Xenolithe liegen auf einem geothermischen Gradienten von über 90 mW/m2, was auf intensive Aufheizprozesse im Mantel hinweist. Oftmals wurde these Aufheizung von einer duktilen Deformation begleitet, deren Ursache eine Dehnung der Mantellithosphäre war. Aufgrund der fehlenden Gleichgewichtstexturen, der Abwesenheit von retrograden Mineralzonierungen und partieller Schmelzprozesse bei den Klinopyroxenen dieser Xenolithe müssen ihre Deformation and Hochtemperaturüberprägung während des tertiären Magmatismus stattgefunden haben. Die porphyroklastischen, hochtemperierten Xenolithe zeigen die stärkste Abreicherung an basaltischer Komponente, den schweren Seltenerdelementen sowie an Y and Sc. Bei dem Olivin-Klinopyroxen-Hornblendit handelt es sich um ein basaltisches Kumulat, welches aufgrund seiner P-T Abschätzung (um 1150 °C bei 9 kbar) aus dem Übergangsbereich von unterer Kruste zu oberem Mantel stammt. Eine40Ar-39Ar Datierung von Kaersutiten dieser Probe weist auf ein Alter von etwa 25 Ma, was in Übereinstimmung mit dem Beginn des tertiären Vulkanismus in dieser Region ist. Diese Untersuchungen verdeutlichen, daß ein Teil des lithosphärischen Mantels unter der Rhön eine thermische Äquilibrierung während des tertiären magmatischen Ereignisses erfuhr. Dagegen zeigen andere Teile noch Relikte einer älteren Geschichte, speziell eine kryptische Metasomatose and den Übergang vom Stabilitätsfeld des Granat-Lherzoliths zum Spinell-Lherzolith. Ein mögliches geotektonisches Szenario für diesen Transfer könnte die postvariscische Krustenreäquilibrierung sein.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ballhaus C, Berry RF, Green DH (1991) High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: implications for the oxidation state of the upper mantle. Contrib Mineral Petrol 107: 27–40Google Scholar
  2. Behrmann J, Drozdzewski G, Heinrichs T, Hach M, Meyer W, Oncken O (1991) Crustal balanced cross sections through the Variscan fold belt, Germany: the central EGTsegment. Tectonophysics 196: 1–21Google Scholar
  3. Boettcher AL, Burnham CW Windom KE, Bohlen SR (1982) Liquids, glasses, and the melting of silicates to high pressures. J Geol 90: 127–138Google Scholar
  4. Brady JB (1995) Diffusion data for silicate minerals, glasses and liquids. In:Ahrens TH (ed) AGU handbook of physical constants. American Geophysical Union, Washington DC, pp 269–290Google Scholar
  5. Brady JB, McCallister RH (1983) Diffusion data for clinopyroxenes from homogenization and self diffusion experiments. Am Mineral 68: 95–105Google Scholar
  6. Brey GP, Köhler T (1990) Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. J Petrol 31: 1353–1378Google Scholar
  7. Cermak V (1995) A geothermal model of the central segment of the European Geotraverse. Tectonophysics 244: 51–55Google Scholar
  8. Crank J (1975) The mathematics of diffusion. Clarendon Press, London, 414 ppGoogle Scholar
  9. Dawson JB (1984) Contrasting types of upper mantle metasomatism? In:Kornprobst J (ed) Kimberlites II: the mantle and crust-mantle relations. Elsevier, Amsterdam, pp 277–287 (Developments in Petrology 11b)Google Scholar
  10. Dimanov A, Ingrin J (1996) Premelting and high-temperature diffusion of Ca in synthetic diopside: an increase of the cation mobility. Phys Chem Min 22: 437–442Google Scholar
  11. Doukhan N, Doukhan J-C, Ingrin J, Jaoul O, Raterron P (1993) Early partial melting in pyroxenes. Am Mineral 78: 1246–1256Google Scholar
  12. Downes H (1990) Shear zones in the upper mantle — relation between geochemical enrichment and deformation in mantle peridotites. Geology 18: 374–377Google Scholar
  13. Droop GTR (1987) A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineral Mag 5: 431–435Google Scholar
  14. Ehrenberg KH, Hickethier H, Rosenberg F, Strecker G, Susic M, Wenzel G (1992) Neue Ergebnisse zum tertidren Vulkanismus der Rhön (Wasserkuppenrhön und Kuppenrhön). Ber Dtsch Min Ges Beih 2, Eur J Mineral 4, Bh 2: 47–102Google Scholar
  15. Eigenfeld R (1958) Über Grundgebirgseinschlüsse in Rhönvulkaniten. Fortschr Mineral 36: 56–57Google Scholar
  16. Eigenfeld R, Ficke B (1963) Exkursion am 21. September 1962: Tertiärer Vulkanismus der Rhön. Fortschr Mineral 41: 46–63Google Scholar
  17. Evensen NM, Hamilton PJ, O' Nions RK (1978) Rare earth abundances in chondritic meteorites. Geochim Cosmochim Acta 42: 1199–1212Google Scholar
  18. Ficke B (1961) Petrologische Untersuchungen an tertiaren basaltischen his phonolitischen Vulkaniten der Rhön. Tschermaks Min Petr Mitt 7: 337–436Google Scholar
  19. Franke W (1989) Tectonostratigraphic units in the Varican belt of Central Europe. Geol Soc Am Spec Paper 230: 67–89Google Scholar
  20. Franke W Oncken O (1990) Geodynamic evolution of the North-Central Variscides - a comic strip. In:Freeman R, Giese P, Mueller S (eds) The European geotraverse: integrative studies. Results from the Fifth Study Centre, Rauischholzhausen, March 26– April 7, 1990. European Science Foundation, Strasbourg, pp 187–194Google Scholar
  21. Franke W Dallmeyer RD, Weber K (1995) Geodynamic evolution. In:Dallmeyer RD, Franke W, Weber K (eds) Pre-Permian geology of Central and Eastern Europe. Springer, Berlin Heidelberg New York Tokyo, pp 579–594Google Scholar
  22. Franz L, Seifert W (1995) A xenolith-derived profile through the lithosphere at the MidGerman Crystalline Rise (Rhön area) - new data on the metamorphism and evidence for a perturbed mantle-geotherm. Ber Dtsch Min Ges Beih l, Eur J Mineral 7: 70Google Scholar
  23. Franz L, Wirth R (1996) TEM-Untersuchungen an Schmelzfilmen auf Korn- und Phasengrenzen in porphyroklastischen Mantelxenolithen (HT Spinell-Lherzolithen) aus der Rhön. Ber Dtsch Min Ges Beih l, Eur J Mineral 8: 58Google Scholar
  24. Franz L, Wirth R (dy1997) Thin intergranular melt films and melt pockets in spinel peridotite xenoliths from the Rh6n area (Germany): early stage of melt generation by grain boundary melting. Contrib Mineral Petrol (in press)Google Scholar
  25. Franz L, Brey GP, Okrusch M (1996) Reequilibration of ultramafic xenoliths from Namibia by metasomatic processes at the mantle boundary. J Geol 104: 599–615Google Scholar
  26. Freer R (1981) Diffusion in silicate minerals and glasses: a data digest and a guide to literature. Contrib Mineral Petrol 76: 440–454Google Scholar
  27. Gachot H (1913) Die vulkanischen Trümmergesteine von Schackau. Jb Preuß Geol L-A 33: 1–40Google Scholar
  28. Gollmann W (1962) Quantitative Untersuchungen an Knollen in Olivinnepheliniten der Rhön: Bestimmung der Lichtbrechung ihrer Minerale mit Hilfe der Doppelvariationsmethode nach Emmons, Bowie Gefügeanalyse nebst genetischer Deutung der Knollen. Thesis, University of Würzburg, pp 96Google Scholar
  29. Harte B (1977) Rock nomenclature with particular relation to deformation and recrystallization textures in olivine-bearing xenoliths. J Geol 85: 279–288Google Scholar
  30. Harte B, Freer R (1982) Diffusion data and their bearing on the interpretation of mantle nodules and the evolution of the mantle lithosphere. Terra Cogn 2: 273–274Google Scholar
  31. Heinrichs T, Giese P, Bankwitz P, Bankwitz E (1994) DEKORP 3/MVE-90 (West) - preliminary geological interpretation of a deep near vertical reflection profile between the Rhenish and the Bohemian massifs, Germany. Z Geol Wiss 22: 771–801Google Scholar
  32. Henjes-Kunst F, Altherr R (1991) Metamorphic petrology of xenoliths from Kenya and northern Tanzania and implications for geotherms and lithospheric structures. J Petrol 33:1125–1156Google Scholar
  33. Henk A (1997) Gravitational orogenic collapse vs plate-boundary stresses: a numerical modelling approach to the Permo-Carboniferous evolution of Central Europe. Geol Rundsch 86: 39–55Google Scholar
  34. Hofmann AW (1984) Geochemical mantle models. Terra Cogn 4: 157–165Google Scholar
  35. Huckenholz HG, Werner CD (1990) Die tertiaren Vulkanite der Heldburger Gangschar (Bayerisch-thüringisches Grabfeld). Ber Dtsch Min Ges Beih 2, Eur J Mineral 2: 1–42Google Scholar
  36. Huckenholz HG, Gilbert MC, Kunzmann T (1992) Stability and phase relations of calcic amphiboles crystallized from magnesio-hastingsite composition in the 1 to 45 kbar pressure range. N Jb Min Abh 164: 229–268Google Scholar
  37. Illies H, Baumann H, Hoffers B (1981) Stress pattern and strain release in the Alpine foreland. Tectonophysics 71: 157–172Google Scholar
  38. Irvin AJ, Price RC (1981) Geochemistry and evolution of lherzolite-bearing phonolitic magma of Nigeria, Australia, East Germany and New Zealand. Geochim Cosmochim Acta 45: 1309–1320Google Scholar
  39. Jurewicz AJG, Watson EB (1988) Cations in olivine, part 2. Diffusion in olivine xenocrysts with applications to petrology and mineral physics. Contrib Mineral Petrol 99: 186–201Google Scholar
  40. Köhler T, Brey GP (1990) Calcium exchange between olivine and clinopyroxene calibrated as a geothermobarometer for natural peridotites from 2 to 60 kb with applications. Geochim Cosmochim Acta 54: 2375–2388Google Scholar
  41. Kramer W, Werner CD (1992) Geochemical evolution of the mafic magmatism in Central Europe. Zbl Geol Paläont I 1991: 1053–1070Google Scholar
  42. Kramm U, Wedepohl KH (1990) Tertiary basalts and peridotite xenoliths from the Hessian Depression (NW Germany), reflecting mantle composition low in radiogenic Nd and Sr. Contrib Mineral Petrol 106: 1–8Google Scholar
  43. Kretz R (1983) Symbols for rock-forming minerals. Am Mineral 68: 277–279Google Scholar
  44. Leake BW (1978) Nomenclature of amphiboles. Am Mineral 63: 1023–1052Google Scholar
  45. Lindsley DH (1983) Pyroxene thermometry. Am Mineral 68: 477–493Google Scholar
  46. Lippolt HW (1978) K-Ar-Untersuchungen zum Alter des Rhön-Vulkanismus. Fortschr Mineral 56, Bh 1: 85Google Scholar
  47. Mengel K (1990) Crustal xenoliths from Tertiary volcanics of the Northern Hessian Depression. Contrib Mineral Petrol 104: 8–26.Google Scholar
  48. Nicolas A, Achauer U, Daignieres M (1994) Rift initiation by lithospheric rupture. Earth Planet Sci Lett 123: 281–298Google Scholar
  49. Oehm J, Schneider A, Wedepohl KH (1983) Upper mantle rocks from basalts of the Northern Hessian Depression (NW Germany). Tschermaks Min Petr Mitt 32: 25–48Google Scholar
  50. Okrusch M (1995) Metamorphic evolution. In:Dallmeyer RD, Franke W, Weber K (eds) Pre-Permian geology of Central and Eastern Europe. Springer, Berlin Heidelberg New York Tokyo, pp 201–216Google Scholar
  51. Okrusch M, Schubert W, Nasir S (1995) Igneous activity (pre- to Early Variscan magmatism). In:Dallmeyer RD, Franke W Weber K (eds) Pre-Permian geology of Central and Eastern Europe. Springer, Berlin Heidelberg New York Tokyo, pp 190–200Google Scholar
  52. Panza GF, Mueller S, Calcagnile G (1980) The gross features of the lithosphere — asthenosphere system in Europe from seismic surface waves and body waves. Pageoph 118: 1209–1213Google Scholar
  53. Raterron P, Ingrin J, Jaoul O, Doukhan N, Elie F (1995) Early partial melting of diopside under high pressure. Phys Earth Planet Int 89: 77–88Google Scholar
  54. Sachtleben T, Seek HA (1981) Chemical control on the Al solubility in orthopyroxene and its implication on pyroxene geothermometry. Contrib Mineral Petrol 78: 157–165Google Scholar
  55. Sautter V, Jaoul O, Abel F (1988) Aluminium diffusion in diopside using the27 A] (p, λ)28Si nuclear reaction: preliminary results. Earth Planet Sci Lett 89: 109–114Google Scholar
  56. Schmidt F-P, Gebreyohannes Y, Schliestedt M (1986) Das Grundgebirge der Rhön. Z Dtsch Geol Ges 137: 287–300Google Scholar
  57. Sheng YJ, Wasserburg GJ, Hutcheon ID (1992) Self diffusion of Mg in spinel and in equilibrium melts: constraints on flash heating of silicates. Geochim Cosmochim Acta 56:2535–2546Google Scholar
  58. Stosch HG (1987) Constitution and evolution of subcontinental upper mantle and lower crust in areas of young volcanism: differences and similarities between the Eifel (F.R. Germany) and Tariat depression (central Mongolia) as evidenced by peridotite and granulite xenoliths. Fortschr Mineral 64: 48–86Google Scholar
  59. Webb SAC, Wood BJ (1986) Spinel-pyroxene-garnet relationships and their dependence on Cr/Al ratio. Contrib Mineral Petrol 92: 471–480Google Scholar
  60. Wedepohl KH (1981) Origin of Tertiary basaltic volcanism in the Northern Hessian Depression. Contrib Mineral Petrol 89: 122–143Google Scholar
  61. Wedepohl KH, Mengel K, Oehm J (1984) Depleted mantle rocks and metasomatically altered peridotite inclusions in Tertiary basalts from the Hessian depression (NW Germany). In:Kornprobst J (ed) Kimberlites II: the mantle and crust-mantel relations. Elsevier, Amsterdam, pp 191–201 (Developments in Petrology 11b)Google Scholar
  62. Willner A Massonne H-J, Krohe A (1991) Tectonothermal evolution of a part of a Variscan magmatic arc: the Odenwald (FR Germany) as an example. Geol Rdsch 80: 369–390Google Scholar
  63. Wimmenauer W (1974) The alkaline province of Central Europe and France. In:Sørensen H (ed) The alkaline rocks. John Wiley and Sons, London, pp 238–270Google Scholar
  64. Witt G (1985) Die junge Evolution des Erdmantels unter der rheinischen Vulkanprovinz: abgeleitet aus der Temperaturgeschichte, dem Gefüge and der Geochemie peridotitischer Mantelxenolithe. Thesis, University of Köln, 242 ppGoogle Scholar
  65. Witt-Eickschen G, Seck HA (1991) Solubility of Ca and Al in orthopyroxene from spinel peridotites and an improved version of an empirical geothermometer. Contrib Mineral Petrol 106: 431–439Google Scholar
  66. Witt-Eickschen G, Kramm U (1996) Unusual geochemial and isotopic signatures in diopsides from mantle xenoliths from the Rhön (Germany): evidence for mantle upwelling beneath Central Europe. Sixth Goldschmidt Conference. J Conf Abstr 1: 679Google Scholar
  67. Witt-Eickschen G, Kramm U (1997) Mantle upwelling and metasomatism beneath Central Europe: geochemical and isotopic constraints from mantle xenoliths from the Rhön (Germany). J Petrol 38: 479–493Google Scholar
  68. Zuleger E, Erzinger J (1988) Determination of the REE and Y in silicate materials with ICP-AES. Fresenius Z Anal Chem 332: 140–143Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • L. Franz
    • 1
  • W. Seifert
    • 1
  • W. Kramer
    • 1
  1. 1.GeoForschungsZentrum PotsdamPotsdamGermany

Personalised recommendations