manuscripta mathematica

, Volume 56, Issue 2, pp 177–191

Sur l'homotopie rationnelle des espaces fonctionnels

  • Micheline Vigué-Poirrier
Article

Abstract

Let X be a nilpotent space such that it exists k⩾1 with Hp (X,ℚ) = 0 p > k and Hk (X,ℚ) ≠ 0, let Y be a (m−1)-connected space with m⩾k+2, then the rational homotopy Lie algebra of YX (resp.\(\left( {Y, y_0 } \right)^{\left( {X, x_0 } \right)} \) is isomorphic as Lie algebra, to H* (X,ℚ) ⊗ (Π* (ΩY) ⊗ ℚ) (resp.+ (X,ℚ) ⊗ (Π* (ΩY) ⊗ ℚ)). If X is formal and Y Π-formal, then the spaces YX and\(\left( {Y, y_0 } \right)^{\left( {X, x_0 } \right)} \) are Π-formal. Furthermore, if dim Π* (ΩY) ⊗ ℚ is infinite and dim H* (Y,Q) is finite, then the sequence of Betti numbers of\(\left( {Y, y_0 } \right)^{\left( {X, x_0 } \right)} \) grows exponentially.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    FÉLIX Y., HALPERIN S., THOMAS J.C.: The homotopy Lie algebra for finite complexes - Publ. IHES56, 387–410 (1983)Google Scholar
  2. [2]
    GRIVEL P.P.: Formes différentielles et suites spectrales-Ann. de l'Institut Fourier,29, 17–37 (1979)Google Scholar
  3. [3]
    HAEFLIGER A.: Rational homotopy of the space of sections of a nilpotent bundle. Trans.A.M.S.,273, 2, 609–620 (1982).Google Scholar
  4. [4]
    HALPERIN S.: Lectures on minimal models — Mémoire SMF, Vol. 9/10, (1983)Google Scholar
  5. [5]
    MILLER H.: The Sullivan conjecture on maps from classifying spaces - Ann. of Math.,120, 39–87 (1984)Google Scholar
  6. [6]
    MOORE J.C.: On a theorem of Borsuk - Funda. Math,43, 195–201, (1956)Google Scholar
  7. [7]
    OUKILI A.: Sur l'homologie d'une algèbre différentielle de Lie — Thèse de 3ème cycle, Nice (1978)Google Scholar
  8. [8]
    QUILLEN D.: Rational homotopy theory - Ann. Math,90, 205–295, (1969)Google Scholar
  9. [9]
    SHIBATA K.: On Haefliger's model for the Gelfand-Fuchs cohomology - Japan J. Math.,7, 379–415, (1981)Google Scholar
  10. [10]
    SILVEIRA F. da: Rational homotopy theory of fibrations - Pacific Journ. of Math,113, 1–35, (1984)Google Scholar
  11. [11]
    SULLIVAN D.: Infinitesimal computations in topology - Publ. IHES,47, 269–331, (1977)Google Scholar
  12. [12]
    TANRÈ D.: Homotopie rationnelle: Modèles de Chen, Quillen, Sullivan - LNM no1025, Springer-VerlagGoogle Scholar
  13. [13]
    THOM R.: L'homologie des espaces fonctionnels — Colloque Top. Alg. Louvain, 29–39, (1956)Google Scholar
  14. [14]
    VIGUÉ-POIRRIER M.: Dans le fibré de l'espace des lacets libres, la fibre n'est pas en général TNCZ - Math Z.,181, 537–542, (1982)Google Scholar
  15. [15]
    VIGUÉ-POIRRIER M.: Cohomologie de l'espace des sections d'un fibré et cohomologie de Gelfand-Fuchs d'une variété - Proc. of the 1983 Nordic summer school on Algebra, Algebraic Topology -L.N.M. no1183, 371–395, (1986)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Micheline Vigué-Poirrier
    • 1
  1. 1.PalaiseauFrance

Personalised recommendations