Journal of Mathematical Chemistry

, Volume 3, Issue 1, pp 25–42 | Cite as

A generalization of Wegscheider's condition. Implications for properties of steady states and for quasi-steady-state approximation

  • Stefan Schuster
  • Ronny Schuster
Papers

Abstract

A generalization of Wegschcider's condition concerning equilibrium constants in chemically reacting systems is formulated, which is then proved to be a necessary and sufficient condition for detailed balancing. In order to include a large multitude of rate laws, a generalized mass action kinetics is considered which comprises usual mass action kinetics and all reversible enzyme kinetics and which is consistent with basic postulates of irreversible thermodynamics for ideal mixtures. Reaction systems of arbitrary stoichiometry are considered. They may contain reactants with fixed concentrations, as is characteristic for models of biochemical reaction networks. Existence, uniqueness, and global asymptotic stability of equilibrium states for reaction systems endowed with generalized man action kinetics are proved. Using these results, he generalized Wegscheider condition is shown to be a sufficient criterion for the applicability of the quasi-steady-state approximation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E Horn and R. Jackson, Arch. Rational Mech. Anal. 47 (l972)8l.Google Scholar
  2. [2]
    J. Wei, J. Chem. Phys. 36 (1962)1578.Google Scholar
  3. [3]
    J.Z. Hearon, Bull. Math. Biophys. 15 (1953)121.Google Scholar
  4. [4]
    K. Hayashi and N. Sakamoto,Dynamic Analysis of Enzyme Systems (Japan Scientific Societies/Springer, Tokyo, Berlin, 1986).Google Scholar
  5. [5]
    B.L. Clarke, in:Advances in Chemical Physics, Vol. XLIII, ed. I. Prigogine and S.A. Rice (Wiley, New York, 1980) p. 1.Google Scholar
  6. [6]
    M. Feinberg, in:Dynamics and Modelling of Reactive Sytems, ed. W.E. Stewart, W.H. Ray and C.C. Conley (Academic Press, New York, 1980) p. 59; and in the volume given sub [7] p. 56.Google Scholar
  7. [7]
    H.G. Othmer, in:Modelling of Chemical Reaction Systems, ed. K.H. Ebert, P. Deuflhard and W. Jäger (Springer, Berlin, 1981) p. 2.Google Scholar
  8. [8]
    R. Heinrich, S.M. Rapoport and T.A. Rapoport, Progr. Biophys. Molec. Biol. 32 (1977)1.Google Scholar
  9. [9]
    S.W. Benson,The Foundations of Chemical Kinetics (McGraw-Hill, New York, 1960).Google Scholar
  10. [10]
    D. Park, J. Theor. Biol. 46 (1974)31.Google Scholar
  11. [11]
    M. Schauer and R. Heinrich, Math. Biosci. 65 (1983)155.Google Scholar
  12. [12]
    F. Battelli and C. Lazzari, Math. Biosci. 75 (1985)229.Google Scholar
  13. [13]
    G. Nicolis and I. Prigogine,Self-Organization in Non-Equilibrium Systems (Wiley, New York, 1977).Google Scholar
  14. [14]
    K. Denbigh,The Principles of Chemical Equilibrium (University Press, Cambridge, U.K., 1955).Google Scholar
  15. [15]
    I. Samohýl,Rational Thermodynamics of Chemically Reacting Mixtures (Academia, Prague, 1982) (in Czech).Google Scholar
  16. [16]
    J.D. Rawn,Biochemistry (Harper and Row, New York, 1983).Google Scholar
  17. [17]
    J.L. Willems,Stability Theory of Dynamical Systems (Nelson, London, 1970).Google Scholar
  18. [18]
    W. Wasow,Asymptotic Expansions for Ordinary Differential Equations (Wiley, New York, 1965).Google Scholar
  19. [19]
    H.G. Holzhütter, G. Jacobasch and A. Bisdorff, Eur. J. Biochem. 149 (1985)101.Google Scholar

Copyright information

© J.C. Baltzer AG, Scientific Publishing Company 1989

Authors and Affiliations

  • Stefan Schuster
    • 1
  • Ronny Schuster
    • 2
  1. 1.Sektion Biologie, Bereich BiophysikHumboldt-Universität zu BerlinBerlinGermany
  2. 2.Institut für BiochemieHumboldt-Universität zu BerlinBerlinGermany

Personalised recommendations