Advertisement

Journal of Materials Science

, Volume 29, Issue 20, pp 5455–5461 | Cite as

Sintering studies on submicrometre-sized Y-Ba-Cu-oxide powder

  • L. C. Pathak
  • S. K. Mishra
  • P. G. Mukunda
  • M. M. Godkhindi
  • D. Bhattacharya
  • K. L. Chopra
Papers

Abstract

The isothermal sintering behaviour of submicrometre-sized (<50 nm) powders of single-phase YBa2Cu3O x (123) and unreacted stoichiometric mixture of submicrometre-sized (<50 nm) powders of BaCO3, Y2O3 and CuO (which on calcination at 1173 K gives YBa2Cu3O x ) was investigated through dilatometry under different sintering atmospheres. The sintering rate of the powder compacts was impeded by the presence of oxygen. The activation energies,Q, of sintering were determined to be 1218 kJ mol−1 in argon, 1593 kJ mor−1 in air and 2142 kJ mol−1 in oxygen. A decrease in the apparent sintered density with increasing oxygen partial pressure was also observed. X-ray diffraction and thermal analyses (thermogravimetry and differential thermal analysis) showed no reaction during sintering of the single-phase product. Pellets fabricated from uncalcined powder exhibit two stages of sintering, one between 1073 and 1173 K having an activation energyQ=627kJ mol−1, and a second one above 1173 K withQ=383.7 kJ mol−1. A.c. susceptibility, resistivity and critical current density were determined as a function of the temperature of the sintered samples.

Keywords

Activation Energy Thermal Analysis Powder Compact Calcination Differential Thermal Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. YANG, C. L. YANG and P. T. WU,J. Mater. Sci. 27 (1992) 1978.Google Scholar
  2. 2.
    T. SATA, K. SAKAI and S. TASHIRO,J. Amer. Ceram. Soc. 74 (1991) 1445.Google Scholar
  3. 3.
    S. K. MISHRA, L. C. PATHAK, M. V. H. RAO, D. BHATTACHARYA and K. L. CHOPRA,Ind. J. Pure Appl. Phys. 30 (1992) 685.Google Scholar
  4. 4.
    S. E. BABCOCK and D. C. LARBALESTIER,Appl. Phys. Lett. 55 (1990) 393.Google Scholar
  5. 5.
    D. BHATTACHARYA, L. C. PATHAK, S. K. MISHRA, D. SEN and K. L. CHOPRA,ibid. 57 (1990) 2145.Google Scholar
  6. 6.
    L. LEVIN, S. F. DIRNFIELD and D. SHWAM,Powder Met. Int. 12 (1980) 26.Google Scholar
  7. 7.
    R. M. GERMAN and Z. A. MUNIR,Powder Met. 3 (1977) 145.Google Scholar
  8. 8.
    J. L. ROUTBORT, S. J. ROTHMAN, N. CHEN, J. N. MUNDY and J. E. BAKER,Phys. Rev. B 43 (1991) 5489.Google Scholar
  9. 9.
    T. NAGARAJAN, V. SRIDHARAN, S. SIVASANKARAN, D. K. BISWAS and K. NANDHINI,Ind. J. Pure Appl. Phys. 30 (1992) 609.Google Scholar
  10. 10.
    K. W. LAY and G. M. RENLUND,J. Amer. Ceram. Soc. 72 (1990) 1208.Google Scholar
  11. 11.
    R. WEAST and M. J. AUSTLE, “CRC Handbook of Chemistry and Physics”, 60th Edn (CRC Press, Cleveland, OH, 1980) p. B58.Google Scholar
  12. 12.
    R. S. ROTH, K. L. DAVIS and J. R. DENNIS,Adv. Ceram. Mater. 2 Special issue (1987) 303.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • L. C. Pathak
    • 1
  • S. K. Mishra
    • 1
  • P. G. Mukunda
    • 1
    • 2
  • M. M. Godkhindi
    • 1
    • 2
  • D. Bhattacharya
    • 1
  • K. L. Chopra
    • 1
  1. 1.Materials Science CentreIndian Institute of TechnologyKharagpurIndia
  2. 2.Department of Metallurgical EngineeringIndian Institute of TechnologyKharagpurIndia

Personalised recommendations