Journal of Materials Science

, Volume 29, Issue 20, pp 5374–5382 | Cite as

Effect of additives on densification and deformation of tetragonal zirconia

  • M. M. R. Boutz
  • A. J. A. Winnubst
  • F. Hartgers
  • A. J. Burggraaf


The effect of additives (Bi2O3, Fe2O3) on densification and creep rates of tetragonal ZrO2-Y2O3 has been investigated. In Bi2O3-doped Y-TZP, a reactive liquid forms at temperatures above 800–900‡C, which leads to a strong enhancement of densification for concentrations of 1–2 mol % Bi2O3. However, during cooling from the processing temperature a strong, undesirable transformation of the tetragonal to the monoclinic phase occurs. The addition of 0.6–1.2 mol % FeO3/2 promotes densification without destabilizing the tetragonal phase. A concentration of 1.2 mol %, however, induces discontinuous grain growth, while this is not the case for 0.6 mol %. Creep rates of Y-TZP were enhanced by a factor of 4–6 by adding 0.6 mol % FeO3/2.


Polymer Zirconia Fe2O3 Processing Temperature Creep Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. WAKAI, S. SAKAGUCHI and Y. MATSUNO,Adv. Ceram. Mater. 1 (1986) 259.Google Scholar
  2. 2.
    T. G. NIEH and J. WADSWORTH, in “Ceramics Today — Tomorrow's Ceramics”, edited by P. Vincenzini (Elsevier Science, Amsterdam, 1991) p. 1527.Google Scholar
  3. 3.
    C. CARRY and A. MOCELLIN, in “High Tech Ceramics”, edited by P. Vincenzini (Elsevier Science, Amsterdam, 1987) p. 1043.Google Scholar
  4. 4.
    B. KELLETT,J. Mater. Res. 5 (1990) 2165.Google Scholar
  5. 5.
    X. WU and I-W. CHEN,J. Am. Ceram. Soc. 73 (1990) 746.Google Scholar
  6. 6.
    J. WITTENAUER, T. G. NIEH and J. WADSWORTH,Scripta Metall. Mater. 26 (1992) 551.Google Scholar
  7. 7.
    M. M. R. BOUTZ, A. J. A. WINNUBST and A. J. BURGGRAAF,Mater. Res. Bull. 29 (1994) 31.Google Scholar
  8. 8.
    G. S. A. M. THEUNISSEN, A. J. A. WINNUBST and A. J. BURGGRAAF,J. Eur. Ceram. Soc. 11 (1993) 315.Google Scholar
  9. 9.
    P. DESCAMPS, J. TIRLOCQ, F. CAMBIER and F. WAKAI,Silicates Ind. 3–4 (1991) 47.Google Scholar
  10. 10.
    C. HWANG and I-W. CHEN,J. Am. Ceram. Soc. 73 (1990) 1626.Google Scholar
  11. 11.
    H. LIANG, T. E. FISCHER, M. NAUER and C. CARRY,ibid. 76 (1993) 325.Google Scholar
  12. 12.
    K. KEIZER, A. J. BURGGRAAF and G. DE WITH,J. Mater. Sci. 17 (1982) 1095.Google Scholar
  13. 13.
    M. J. VERKERK, A. J. A. WINNUBST and A. J. BURGGRAAF,ibid. 17 (1982) 3113.Google Scholar
  14. 14.
    D. J. GREEN, R. H. J. HANNINK and M. V. SWAIN, “Transformation toughening of ceramics” (CRC Press, Boca Raton, FL, 1989).Google Scholar
  15. 15.
    I-W. CHEN and L. A. XUE,J. Am. Ceram. Soc. 73 (1990) 2585.Google Scholar
  16. 16.
    R. H. G. KIMINAMI,J. Mater. Sci. Lett. 9 (1990) 373.Google Scholar
  17. 17.
    K. HABERKO,Ceram. Int. 5 (1979) 148.Google Scholar
  18. 18.
    M. A. C. G. VAN DE GRAAF and A. J. BURGGRAAF, in “Advances in Ceramics”, Vol. 12, “Science and Technology of Zirconia II”, edited by N. Claussen, M. Rühle and A. H. Heuer (American Ceramic Society, Columbus, OH, 1984) p. 744.Google Scholar
  19. 19.
    W. F. M. GROOT ZEVERT, A. J. A. WINNUBST, G. S. A. M. THEUNISSEN and A. J. BURGGRAAF,J. Mater. Sci. 25 (1990) 3449.Google Scholar
  20. 20.
    J. G. VAN OMMEN, K. HOVING, H. BOSCH and P. J. GELLINGS,Z. Phys. Chem. N.F. 134 (1983) 99.Google Scholar
  21. 21.
    H. TORAYA, M. YOSHIMURA and S. SOMIYA,J. Am. Ceram. Soc. 67 (1984) C119.Google Scholar
  22. 22.
    M. M. R. BOUTZ, Thesis, University of Twente (1993).Google Scholar
  23. 23.
    A. J. A. WINNUBST, P. J. M. KROOT and A. J. BURGGRAAF,J. Phys. Chem. Solids 44 (1983) 955.Google Scholar
  24. 24.
    R. B. ROOF,Acta Crystallogr. 9 (1956) 781.Google Scholar
  25. 25.
    A. E. HUGHES and S. P. S. BADWAL,Solid State Ionics 46 (1991) 265.Google Scholar
  26. 26.
    M. NAUER and C. CARRY,Scripta. Metall. Mater. 24 (1990) 1459.Google Scholar
  27. 27.
    M. M. R. BOUTZ, A. J. A. WINNUBST, A. J. BURGGRAAF, M. NAUER and C. CARRY,J. Eur. Ceram. Soc. 13 (1994) 103.Google Scholar
  28. 28.
    W. D. KINGERY, in “Kinetics of high temperature processes”, edited by W. D. Kingery (Wiley, New York, 1959) p. 187.Google Scholar
  29. 29.
    TH. COURTNEY,Met. Trans. 15A (1984) 1065.Google Scholar
  30. 30.
    R. M. GERMAN, “Liquid phase sintering” (Plenum Press, New York, 1985).Google Scholar
  31. 31.
    G. SMITH, (ed.), “Phase Diagrams for Ceramist”, Vol. IV (American Ceramic Society, Columbus, OH, 1981) pp. 118, 128.Google Scholar
  32. 32.
    A. J. VAN HENGSTUM, J. G. VAN OMMEN, H. BOSCH and P. J. GELLINGS,Appl. Catal. 5 (1983) 207.Google Scholar
  33. 33.
    M. S. KALISZEWSKI and A. H. HEUER,J. Am. Ceram. Soc. 73 (1990) 1504.Google Scholar
  34. 34.
    J. G. VAN OMMEN, H. BOSCH, P. J. GELLINGS and J. R. H. ROSS, in “Preparation of Catalysts IV”, edited by B. Delmon, P. Grange, P. A. Jacobs and G. Porcelet (Elsevier Science, Amsterdam, 1987) p. 151.Google Scholar
  35. 35.
    A. KARAS, R. SOSSEN and W. R. CANNON, Presentation (3-JV-90) at the “92nd Annual Meeting of the American Ceramic Society”, Dallas, Texas, 22–26 April (1990).Google Scholar
  36. 36.
    R. D. SHANNON,Acta Crystallogr. A32 (1976) 751.Google Scholar
  37. 37.
    A. HOFFMANN and W. A. FISCHER,Z. Phys. Chem. NF 17 (1958) 30.Google Scholar
  38. 38.
    M. M. R. BOUTZ, R. J. M. OLDE SCHOLTENHUIS, A. J. A. WINNUBST and A. J. BURGGRAAF, in “Nanoceramics”, British Ceramic Proceedings Series Vol. 51, edited by R. Freer (Institute of Materials, London, 1993) pp. 75–86.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • M. M. R. Boutz
    • 1
  • A. J. A. Winnubst
    • 1
  • F. Hartgers
    • 1
  • A. J. Burggraaf
    • 1
  1. 1.Faculty of Chemical Technology, Laboratory for Inorganic Chemistry, Materials Science and CatalysisUniversity of TwenteAE EnschedeThe Netherlands

Personalised recommendations