Continuum Mechanics and Thermodynamics

, Volume 2, Issue 1, pp 17–30 | Cite as

Tikhonovs regularization method for ill-posed problems

A comparison of different methods for the determination of the regularization parameter
  • J. Honerkamp
  • J. Weese


Frequently the determination of material characteristic functions, such as the molecular mass distribution of a polymeric sample or the relaxation spectrum of a viscoelastic fluid, leads to an ill-posed problem. When Tikhonov regularization is applied to such a problem the problem of an appropriate choice of the regularization parameter arises. Well-known methods to determine this parameter, such as the discrepancy principle, and a method based on the minimization of the predictive mean-square signal error are compared with a self-consistence method. Monte Carlo simulations have been carried out for the determination of the relaxation spectrum from small amplitude oscillatory shear flow data. The self-consistence method has proven to be much more robust and reliable.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Morozov, V. A.: Methods for solving incorrectly posed problems. New York: Springer 1984Google Scholar
  2. 2.
    Groetsch, C. W.: The theory of Tikhonov regularization for Fredholm equations of the first kind. Boston: Pitman 1984Google Scholar
  3. 3.
    Gull, S. F.; Skilling, J.; I.E.E. Proc. 1984, 131F, 646Google Scholar
  4. 4.
    Provencher, S. W.: Contin (Version 2) users manual. Technical Report EMBL-DA07. Computer Physics Communications Program Library. Queen's University of Belfast, 1984Google Scholar
  5. 5.
    Provencher, S. W.: Comput. Phys. Commun. 27 (1982) 213Google Scholar
  6. 6.
    Provencher, S. W.: Comput. Phys. Commun. 27 (1982) 229Google Scholar
  7. 7.
    Skilling, J.; Bryan, R. K.: Monthly notices of the roy. Astron. Soc. 211 (1984) 111Google Scholar
  8. 8.
    Vancso, G.; Tomka J.; Vancso-Polacsek, K.: Macromolecules 21 (1988) 415Google Scholar
  9. 9.
    Brown, W.; Johnsen, R.; Štěpánek, P., Jakeš, J. Macromolecules 21 (1988) 2859Google Scholar
  10. 10.
    Livesey, A. K.; Licinio, P.; Delaye, M.: J. Chem. Phys. 84 (9) (1986) 5102Google Scholar
  11. 11.
    Potton, J. A.; Daniell, G. J.; Rainford, B. D.: J. Appl. Crystallogr. 21 (1988) 663Google Scholar
  12. 12.
    Davies, A. R.; Andersson, R. S.; J. Austr. Mathm. Soc. 28B (1986) 114Google Scholar
  13. 13.
    Whaba, G.: In Solution methods for integral equations. Golberg, M. A., Ed.: New York: Plenum Press 1978Google Scholar
  14. 14.
    Press, W. H. Flannery, B. P.; Teukolsky, S. A.; Vetterling, W. T.: Numerical recipes. Cambridge University Press. Cambridge 1986Google Scholar
  15. 15.
    Honerkamp, J.; Weese, J.: Macromolecules 22 (1989) 4372Google Scholar
  16. 16.
    Mallows, C. L.: Technometrics 15 (1973) 661Google Scholar
  17. 17.
    Ferry, J. D.: Viscoelastic properties of polymers. New York: Wiley & Sons 1980Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • J. Honerkamp
    • 1
  • J. Weese
    • 1
  1. 1.Fakultät für PhysikAlbert-Ludwigs-UniversitätFreiburgFRG

Personalised recommendations