Continuum Mechanics and Thermodynamics

, Volume 2, Issue 1, pp 17–30 | Cite as

Tikhonovs regularization method for ill-posed problems

A comparison of different methods for the determination of the regularization parameter
  • J. Honerkamp
  • J. Weese
Article

Abstract

Frequently the determination of material characteristic functions, such as the molecular mass distribution of a polymeric sample or the relaxation spectrum of a viscoelastic fluid, leads to an ill-posed problem. When Tikhonov regularization is applied to such a problem the problem of an appropriate choice of the regularization parameter arises. Well-known methods to determine this parameter, such as the discrepancy principle, and a method based on the minimization of the predictive mean-square signal error are compared with a self-consistence method. Monte Carlo simulations have been carried out for the determination of the relaxation spectrum from small amplitude oscillatory shear flow data. The self-consistence method has proven to be much more robust and reliable.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Morozov, V. A.: Methods for solving incorrectly posed problems. New York: Springer 1984Google Scholar
  2. 2.
    Groetsch, C. W.: The theory of Tikhonov regularization for Fredholm equations of the first kind. Boston: Pitman 1984Google Scholar
  3. 3.
    Gull, S. F.; Skilling, J.; I.E.E. Proc. 1984, 131F, 646Google Scholar
  4. 4.
    Provencher, S. W.: Contin (Version 2) users manual. Technical Report EMBL-DA07. Computer Physics Communications Program Library. Queen's University of Belfast, 1984Google Scholar
  5. 5.
    Provencher, S. W.: Comput. Phys. Commun. 27 (1982) 213Google Scholar
  6. 6.
    Provencher, S. W.: Comput. Phys. Commun. 27 (1982) 229Google Scholar
  7. 7.
    Skilling, J.; Bryan, R. K.: Monthly notices of the roy. Astron. Soc. 211 (1984) 111Google Scholar
  8. 8.
    Vancso, G.; Tomka J.; Vancso-Polacsek, K.: Macromolecules 21 (1988) 415Google Scholar
  9. 9.
    Brown, W.; Johnsen, R.; Štěpánek, P., Jakeš, J. Macromolecules 21 (1988) 2859Google Scholar
  10. 10.
    Livesey, A. K.; Licinio, P.; Delaye, M.: J. Chem. Phys. 84 (9) (1986) 5102Google Scholar
  11. 11.
    Potton, J. A.; Daniell, G. J.; Rainford, B. D.: J. Appl. Crystallogr. 21 (1988) 663Google Scholar
  12. 12.
    Davies, A. R.; Andersson, R. S.; J. Austr. Mathm. Soc. 28B (1986) 114Google Scholar
  13. 13.
    Whaba, G.: In Solution methods for integral equations. Golberg, M. A., Ed.: New York: Plenum Press 1978Google Scholar
  14. 14.
    Press, W. H. Flannery, B. P.; Teukolsky, S. A.; Vetterling, W. T.: Numerical recipes. Cambridge University Press. Cambridge 1986Google Scholar
  15. 15.
    Honerkamp, J.; Weese, J.: Macromolecules 22 (1989) 4372Google Scholar
  16. 16.
    Mallows, C. L.: Technometrics 15 (1973) 661Google Scholar
  17. 17.
    Ferry, J. D.: Viscoelastic properties of polymers. New York: Wiley & Sons 1980Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • J. Honerkamp
    • 1
  • J. Weese
    • 1
  1. 1.Fakultät für PhysikAlbert-Ludwigs-UniversitätFreiburgFRG

Personalised recommendations