manuscripta mathematica

, Volume 42, Issue 2–3, pp 221–243

Minimal algebras of infinite representation type with preprojective component

  • Dieter Happel
  • Dieter Vossieck
Article

Abstract

Let A be a finite dimensional, basic and connected algebra (associative, with 1) over an algebraically closed field k. Denote by e1,...,en a complete set of primitive orthogonal idempotents in A and by Ai= A/AeiA. A is called a minimal algebra of infinite representation type provided A is itself of infinite representation type,whereas all Ai, 1≤i≤n,are of finite representation type. The main result gives the classification of the minimal algebras having a preprojective component in their Auslander-Reiten quiver. The classification is obtained by realizing that these algebras are essentially given by preprojective tilting modules over tame hereditary algebras.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    BONGARTZ, K.: unpublishedGoogle Scholar
  2. [2]
    BONGARTZ, K.: Tilted algebras. Springer Lecture Notes, 903 (1981) 26–38Google Scholar
  3. [3]
    DLAB, V., RINGEL, C.M.: Indecomposable representations of graphs and algebras. Memoirs Amer. Math. Soc. 173 (1976)Google Scholar
  4. [4]
    GABRIEL, P.: Auslander-Reiten sequences and representation-finite algebras. Springer Lecture Notes, 831 (1980), 1–71Google Scholar
  5. [5]
    HAPPEL, D., RINGEL, C.M.: Tilted algebras, to appear Trans. Amer. Math. Soc.Google Scholar
  6. [6]
    HAPPEL, D., RINGEL, C.M.: Construction of tilted algebras. Springer Lecture Notes, 903 (1981), 125–144Google Scholar
  7. [7]
    HARARY, F., PALMER, E.M.: Graphical Enumeration. Academic Press, New York and London 1973Google Scholar
  8. [8]
    OVSIENKO, S.A.: Integral weakly positive forms. In: Schur matrix problems and quadratic forms. Preprint Kiev (1978), 3–17Google Scholar
  9. [9]
    RINGEL, C.M.: Representations of K-species and bimodules. Journal of Algebra41 (1976), 269–302Google Scholar
  10. [10]
    RINGEL, C.M.: The rational invariants of the tame quivers. Inv. Math.58, 217–239 (1980)Google Scholar
  11. [11]
    RINGEL, C.M.: Bricks in hereditary length categories, to appear in Resultate der MathematikGoogle Scholar
  12. [12]
    VOSSIECK, D.: Präprojektive Kippmoduln über zahmen Köcheralgebren, Diplomarbeit Universität Bielefeld, 1982Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Dieter Happel
    • 1
  • Dieter Vossieck
    • 1
  1. 1.Fakultät für Mathematik Universität BielefeldBielefeld 1BR Deutschland

Personalised recommendations