Journal of Mathematical Chemistry

, Volume 16, Issue 1, pp 27–35

On Borromean links

  • Chengzhi Liang
  • Kurt Mislow
Article
  • 91 Downloads

Abstract

n-Borromean links are nontrivial links in whichn rings,n ≥ 3, are combined in such a way that any two component rings form a trivial link. The symmetry of links withn = 3 is discussed, and it is shown that such links form a variety of series whose members are different isotopy types. Examples are adduced of 3-Borromean links that are topologically chiral: Novel constructions are described ofn-Borromean links with and without at least one nontrivial sublink.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    O. Nanyes, Amer. Math. Monthly 100 (1993) 786.Google Scholar
  2. [2]
    P.G. Tait, On knots, Trans. Roy. Soc. Edin. 28 (1876-77) 145–190.Google Scholar
  3. [3]
    D. Rolfsen,Knots and Links (Publish or Perish, Berkeley, 1976; second printing with corrections:Publish or Perish, Houston, 1990). (a) Appendix C: Table of knots and links, pp. 388–429. (b) p. 67.Google Scholar
  4. [4]
    M. Gardner,The Unexpected Hanging and Other Mathematical Diversions (Simon and Schuster, New York, 1969), chapter 2 (“Knots and Borromean Rings”) pp. 24–33.Google Scholar
  5. [5]
    H.L. Frisch and E. Wasserman, J. Amer. Chem. Soc. 83 (1961) 3789; E. Wasserman, Sci. Amer. 207/5 (1962) 94.Google Scholar
  6. [6]
    N. van Gulick, New J. Chem. 17 (1993) 619 [manuscript originally submitted to Tetrahedron, August 1960].Google Scholar
  7. [7]
    C.O. Dietrich-Buchecker and J.-P. Sauvage, Interlocked and knotted rings in biology and chemistry, in:Bioorganic Chemistry Frontiers, ed. H. Dugas (Springer-Verlag, Berlin, 1991) Vol. 2, pp. 195–248.Google Scholar
  8. [8]
    D.M. Walba, T.C. Homan, R.M. Richards and R.C. Haltiwanger, New J. Chem. 17 (1993) 661.Google Scholar
  9. [9]
    G. Schill and C. Zürcher, Chem. Ber. 110 (1977) 2046; G. Schill, K. Rissler, H. Fritz and W. Vetter, Angew. Chem. Int. Ed. Engl. 20 (1981) 187.Google Scholar
  10. [10]
    J.-P. Sauvage and J. Weiss, J. Amer. Chem. Soc. 107 (1985) 6108.Google Scholar
  11. [11]
    C. Liang and K. Mislow, J. Math. Chem. 15 (1994) 1, and references therein.Google Scholar
  12. [12]
    S.J. Tauber, J. Res. Nat. Bur. Stand. 67A (1963) 591.Google Scholar
  13. [13]
    H.S.M. Coxeter,Introduction to Geometry (Wiley, New York, 1969) pp. 162–163.Google Scholar
  14. [14]
    B. Lindström and H.-O. Zetterström, Amer. Math. Monthly 98 (1991) 340.Google Scholar
  15. [15]
    R. Brown and J. Robinson, Amer. Math. Monthly 99 (1992) 376.Google Scholar
  16. [16]
    H. Brunn, Ueber Verkettung, Sitzungsberichte der mathematisch-physikalischen Classe der k.b. Akademie der Wissenschaften zu München 22 (1892) 77–99, figs. 1–11.Google Scholar
  17. [17]
    W. Lietzmann,Anschauliche Topologie (Oldenbourg, München, 1955) pp. 80–83;Visual Topology (Chatto & Windus, London, 1965) pp. 74–77.Google Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1994

Authors and Affiliations

  • Chengzhi Liang
    • 1
  • Kurt Mislow
    • 1
  1. 1.Department of ChemistryPrinceton UniversityPrincetonUSA

Personalised recommendations