Advertisement

manuscripta mathematica

, Volume 58, Issue 1–2, pp 155–177 | Cite as

Real spectra of complete local rings

  • M. E. Alonso
  • C. Andradas
Article

Abstract

We Show that: (a) closures of a constructible subsets of real spectrum (SpecrA) of complete noetherian local ring A with formally real residue field R are constructible. (b) The connected components of constructible subsets of SpecrA are constructible if and only if R has finitely many ordernigs We define also “semialgebroid” subsets and we obtain for them similar properties to those of semianalytic germs subsets.

Keywords

Number Theory Algebraic Geometry Topological Group Local Ring Residue Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bochnak,J., Coste M., Roy M.F.: “Géometrie algébrique réelle”. To appear in Springer-VerlagGoogle Scholar
  2. [2]
    Bourbaki,N.: “Algèbre commmutative”. Chap. VII,Hermann, Paris (1961–65)Google Scholar
  3. [3]
    Coste,M., Roy,M.F.,: “La tonologie du spectre réel”. Contemporary Math.8 (1982) 27–59)Google Scholar
  4. [4]
    Delfs,H.: “The homotony axiom in semialgebraic cohomology” J. reine angew. Math.355 (1985), 108–128Google Scholar
  5. [5]
    Delfs,H., Gamboa,J.M.: “Abstract semialgebraic functions”. Preprint (1385) NWF-I Mathematik, Universitat RegensbungGoogle Scholar
  6. [6]
    Fernandez,F, Recio,T, Ruiz,J.: “Generalized Thom's lemma in semianalytic geometry”. Bull. Pol. Ac. Math., to appearGoogle Scholar
  7. [7]
    Lasalle,G.: “Sur le théoreme des zéros differentiables” Lect. Notes in Math535 (1975). Springer-VerlagGoogle Scholar
  8. [8]
    L'ojasiewicz,S.: “Ensembles semianalytiques”. I.H.E.S. 1965Google Scholar
  9. [9]
    Ruiz,J.: “Cones locaux et completions”. C.R.Ac.Sc. Paris, t.302, Séries I, no2, 1986Google Scholar
  10. [10]
    Ruiz,J.: “A going down theorem for real spectra”. Preprint 1986. Dpto. de Algebra Univ. Complutense MadridGoogle Scholar
  11. [11]
    Ruiz,J.: “Constructibility of closures in real spectra”. Preprint. 1986 Dpto. De Algebra. Univ. Complutense MadridGoogle Scholar
  12. [12]
    Schwartz,N.: “Real closed spaces”. Habilitationsschrift,München 1984Google Scholar
  13. [13]
    Tougeron,J.C.: “Idéaux des fonctions differentiables” Ergebnisse der Mathematik 71 (1972), Springer-VerlagGoogle Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • M. E. Alonso
    • 1
  • C. Andradas
    • 1
  1. 1.Departamento de Algebra Facultad de Ciencias MatemäticasUniversidad ComplutenseMadridSpain

Personalised recommendations