Journal of Materials Science

, Volume 24, Issue 11, pp 4168–4175 | Cite as

Toughness properties of a three-dimensional carbon-epoxy composite

  • Valérie A. Guénon
  • Tsu -Wei Chou
  • John W. GillespieJr.


The three-dimensional (3D) orthogonal interlocked fabric contains through-the-thickness rein-forcement in order to enhance the interlaminar fracture toughness of the composite. The interlaminar fracture toughness of a carbon-epoxy orthogonal interlocked fabric composite was experimentally determined by use of the recently developed tabbed double cantilever beam specimen. The data reduction methods applicable to these tests and materials and the interpretation of the results were discussed. The results of critical strain energy release rate,GIc, were compared to those of a two-dimensional (2D) laminate having the same in-plane structure. The energy-dissipating crack propagation processes were described. The in-plane fracture toughness of the 3D fabric was experimentally measured and compared to that of the 2D laminate. The through-the-thickness fibres were found to create a ten-fold increase in interlaminar toughness, and a 25% improvement in the in-plane fracture toughness.


Fracture Toughness Energy Release Rate Cantilever Beam Critical Strain Strain Energy Release 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. J. Wilkins, “The Engineering Significance of Defects in Composite Structures”, AGARD Conference Proceeding No. 355 (Elsevier, Essex, 1983).Google Scholar
  2. 2.
    J. W. Gillespie Jr,Comp. Struct. 2 (1984) 49.Google Scholar
  3. 3.
    R. J. Rothschilds, J. W. Gillespie Jr andL. A. Carlsson, “Instability Related Delamination Growth in Thermoset and Thermoplastic Composites”, ASTM STP 972 (American Society for Testing and Materials, Philadelphia, Pennsylvania, 1988).Google Scholar
  4. 4.
    D. H. Hunston,Comp. Technol. Rev. 6 (4) (1984) 176.Google Scholar
  5. 5.
    J. E. Masters, “Characterization of Impact Development in Graphite Epoxy Laminates”, ASTM STP 948 (American Society for Testing and Materials, Philadelphia, Pennsylvania, 1987) pp. 238–58.Google Scholar
  6. 6.
    Y. Ogo, Master's thesis, University of Delaware (1987).Google Scholar
  7. 7.
    L. A. Mignery, T. M. Tan andC. T. Sun, “The Use of Stitching to Suppress Delamination in Laminated Composites”, ASTM STP 876 (American Society for Testing and Materials, Philadelphia, Pennsylvania, 1985) pp. 371–85.Google Scholar
  8. 8.
    A. B. Macander, R. M. Crane andE. T. Camponeschi Jr, “Fabrication and Mechanical Properties of Multidimensionally (X-D) Braided Composite Materials”, ASTM STP 873 (American Society for Testing and Materials, Philadelphia, Pennsylvania, 1986) pp. 422–45.Google Scholar
  9. 9.
    H. B. Dexter andJ. G. Funk, “Impact Resistance and Interlaminar Fracture Toughness of Through-the-Thickness Reinforced Graphite Epoxy”, AIAA Paper, 86-1020-CP (1986) pp. 700–709.Google Scholar
  10. 10.
    S. W. Fowser, Master's thesis, University of Delaware (1986).Google Scholar
  11. 11.
    T. R. Guess andE. D. Reedy Jr,Compos. Technol. Res. 7 (4) (1985) 136.Google Scholar
  12. 12.
    V. A. Guénon, T. W. Chou andJ. W. Gillespie Jr, Fabricating Composites '87 Conference, SME technical paper, 15–18 September, 1987 Philadelphia, Pennsylvania (SME, Michigan, 1987) EM 87-551; 1–17.Google Scholar
  13. 13.
    L. Taske andA. P. Majidi, in Proceedings of the American Society for Composites, Second Technical Conference, 23–25 September, University of Delaware, Newark, Delaware (Technomic, Lancaster, PA, 1987).Google Scholar
  14. 14.
    J. M. Whitney, C. E. Browning andW. Hoogsteden,J. Reinf. Plastics Compos. October (1982) 297.Google Scholar
  15. 15.
    P. E. Keary, L. B. Ilcewicz, C. Shaar andJ. Trostle,J. Compos. Mater. 19 (2) (1985) 154.Google Scholar
  16. 16.
    D. J. Wilkins, J. R. Eisenmann, R. A. Camin, W. S. Margolis andR. A. Benson, “Characterizing Delamination Crack Growth in Graphite Epoxy”, ASTM STP 775 (American Society for Testing and Materials, Philadelphia, Pennsylvania, 1982) pp. 168–83.Google Scholar
  17. 17.
    NASA, “Standard Tests for Toughened Resin Composites”, Revised Edition, NASA Reference Publication 1092 ACEE Composites Project Office, Langley Research Center, Hampton, Virginia (1983).Google Scholar
  18. 18.
    E. J. Hearn, “Mechanics of Materials”, 2nd Edn, (Pergamon, 1985) International Series on Materials Science and Technology, Vol. 19, p. 271.Google Scholar
  19. 19.
    S. Mostovoy, P. B. Crosley andE. J. Ripling,J. Mater. 2 (1967) 661.Google Scholar
  20. 20.
    L. A. Carlsson andR. B. Pipes, “Experimental Characterization of Advanced Composite Materials” (Prentice Hall, New-Jersey, 1986) pp. 19–21.Google Scholar
  21. 21.
    Reynolds Aluminum Supply Company, Product and Data Catalog (Reynolds, Richmond, Virginia, 1976).Google Scholar
  22. 22.
    S. W. Tsai, Composites Design 1986, Think Composites, p. 11–4.Google Scholar
  23. 23.
    J. M. Whitney andJ. W. Gillespie Jr, “CEMCAL: Composites Experimental Mechanics Calculations”, Center for Composite Materials Software, University of Delaware (1987).Google Scholar
  24. 24.
    J. W. Gillespie, L. A. Carlsson andA. J. Smiley,Compos. Sci. Technol. 28 (1987).Google Scholar
  25. 25.
    K. Friedrich, “Microstructure and Fracture of Fiber Reinforced Thermoplastic Polyethylene Terephthalate (Rynite®)” (CCM-80-17 Center for Composite Materials Publication, University of Delaware, 1980).Google Scholar

Copyright information

© Chapman and Hall Ltd 1989

Authors and Affiliations

  • Valérie A. Guénon
    • 1
  • Tsu -Wei Chou
    • 1
  • John W. GillespieJr.
    • 1
  1. 1.Department of Mechanical EngineeringCenter for Composite Materials, University of DelawareNewarkUSA

Personalised recommendations