manuscripta mathematica

, Volume 24, Issue 4, pp 351–378 | Cite as

Intrinsic Lipschitz classes on manifolds with applications to complex function theory and estimates for the\(\bar \partial \) and\(\bar \partial _b \) equations

  • Steven G. Krantz


An intrinsic definition of Lipschitz classes in terms of vector fields on man-ifolds is provided and it is shown that it is locally equivalent with a more classical definition. A finer result is then proved for strongly pseudo-convex CR manifolds and applications of the theorems are given to smoothness of holomorphic functions and estimates for the\(\bar \partial \) and\(\bar \partial _b \). equations.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    PAUL BUTZER and HUBERT BERENS,Semi Groups of Operators and Approximation, Springer, New York, 1967.Google Scholar
  2. 2.
    HERBERT FEDERER,Geometric Measure Theory, Springer, New York, 1969.Google Scholar
  3. 3.
    G. B. FOLLAND, Subelliptic Estimates and Function Spaces On Nilpotent Lie Groups,Ark. Mat., 13 (1975), 161–207.Google Scholar
  4. 4.
    C. B. FOLLAND and J. J. KOHN,The Neumann Problem for the Cauchy-Riemann Complex, Princeton University Press, Princeton, 1972.Google Scholar
  5. 5.
    C. B. FOLLAND and E. M. STEIN, Estimates For The\(\bar \partial _b \) Complex And Analysis On The Heisenberg Group, Comm.Pure Appl. Math., 27 (1974), 429–522.Google Scholar
  6. 6.
    P. C. GREINER and E. M. STEIN,Estimates For The \(\bar \partial \)-Neuman Problem, Princeton University Press, Princeton, 1977.Google Scholar
  7. 7.
    R. HARVEY and B. LAWSON, On Boundiness Of Complex Analytic Varieties I,Annals of Math., 102 (1975), 223–90.Google Scholar
  8. 8.
    S. HELGASON,Differential Geometry And Symmetric Spaces, Academic Press, New York, 1962.Google Scholar
  9. 9.
    L. HÖRMANDER,An Introduction To Complex Analysis In Several Variables, Van Nostrand, Princeton, 1966.Google Scholar
  10. 10.
    N. KERZMAN, Holder and Lp Estimates For Solutions Of\(\bar \partial u = f\) On Strongly Pseudo-Convex Domains,Comm. Pure Appl. Math., 24 (1971), 301–79.Google Scholar
  11. 11.
    S. KRANTZ, Optimal Lipschitz and Lp Regularity For The Equation\(\bar \partial u = f\) On Strongly Pseudo-Convex Domains,Math. Annalen, 219 (1976), 233–60.Google Scholar
  12. 12.
    S. KRANTZ, Structure And Interpolation Theorems For Certain Lipschitz Classes And Estimates For The\(\bar \partial \) Equation,Duke Math. Journal, 2 (1976), 417–39.Google Scholar
  13. 13.
    —, Characterizations Of Certain Lipschitz Classes And Applications To Interpolation And Function Theory On Nilpotent Lie Groups, preprint.Google Scholar
  14. 14.
    —, Characterizations Of Various Domains Of Holomorphy Via\(\bar \partial \) Estimates And Applications To A Problem Of Kohn, preprint.Google Scholar
  15. 15.
    S. M. NIKOL'SKII, Approximation Of Functions Of Several Variables And Imbedding Theorems, Springer, New York, 1975.Google Scholar
  16. 16.
    L. P. ROTHSCHILD and E. M. STEIN, Hypoelliptic Differential Operators And Nilpotent Groups,Acta. Mathematica, 137 (1977), 247–320.Google Scholar
  17. 17.
    W. RUDIN, Holomorphic Lipschitz Functions In Balls, preprint.Google Scholar
  18. 18.
    J. P. SERRE, Lie Algebras And Lie Groups, Benjamin, New York, 1965.Google Scholar
  19. 19.
    E. M. STEIN, Singular Integrals And Estimates For The Cauchy-Riemann Equations,Bull. Amer. Math. Soc., 79 (1973), 440–45.Google Scholar
  20. 20.
    —,Singular Integrals And Differentiability Properties Of Functions, Princeton University Press, Princeton, 1970.Google Scholar
  21. 21.
    E. M. STEIN,Boundary Behavior of Holomorphic Functions Of Several Complex Variables, Princeton University Press, Princeton, 1972.Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Steven G. Krantz
    • 1
  1. 1.Department of MathematicsUniversity of CaliforniaLos AngelesUSA

Personalised recommendations