manuscripta mathematica

, Volume 25, Issue 4, pp 323–347

Monads and moduli of vector bundles

  • Wolf Barth
  • Klaus Hulek
Article

Abstract

Horrocks has shown that every vector bundle on ℙ2 and ℙ3 admits a certain “double-ended resolution” by line bundles, which he called a monad. We reprove Horrocks' results taking much care of uniqueness of the monads so obtained. This technique should be useful for constructing moduli spaces of stable vector bundles.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [l]
    Atiyah,M.F.,Ward,R.S.: Instantons and algebraic geometry. Commun.Math.Phys. 55, 117–124 (1977)Google Scholar
  2. [2]
    Atiyah,M.F., Drinfeld,V.G., Hitchin,N.J., Manin,Yu.I.: Construction of instantons. Preprint, Oxford 1978Google Scholar
  3. [3]
    Barth,W.: Moduli of vector bundles on the projective plane. Inv.math., 42, 63–91 (1977)Google Scholar
  4. [4]
    Barth, W., Elencwajg, G.: To appearGoogle Scholar
  5. [5]
    Godement,T.: Topologie algébrique et théorie des faisceaux. Hermann, Paris, 1958Google Scholar
  6. [6]
    Horrocks,G.: Vector bundles on the punctured spectrum of a local ring. Proc.London Math.Soc. 14, 689–713 (1964)Google Scholar
  7. [7]
    Horrocks,G.: Letter to Mumford, 1971, unpublishedGoogle Scholar
  8. [8]
    Horrocks,G.: Construction of bundles on Pn. In Séminaire Douady-Verdier. Ec.Norm.Sup. Paris (1977)Google Scholar
  9. [9]
    Hulek,K.: Forthcoming thesisGoogle Scholar
  10. [10]
    Takemoto,F.: Stable bundles on algebraic surfaces. Nagoya Math. J., 47, 29–48 (1972)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Wolf Barth
    • 1
  • Klaus Hulek
    • 1
  1. 1.Mathematisches InstitutUniversität Erlangen-NürnbergErlangenWest-Germany

Personalised recommendations