manuscripta mathematica

, Volume 26, Issue 1–2, pp 63–82 | Cite as

Äquivariante whiteheadtorsion

  • Henning Hauschild
Article

Abstract

In this note we compute the equivariant Whiteheadgroups WHG(X) introduced by S. Illman. Because a G-homotopy equivalence is in general not isovariant, and a G-diffeomorphism is isovariant, the group WhG(X) does not give the right invariants for the equivariant s-cobordism theorem. So we introduce the isovariant Whiteheadgroup IWhG(X), prove an isovariant s-cobordism theorem and give some applications.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. [1]
    Boardman, J., Vogt, R.: Homotopy invariant algebraic structures on topological spaces. Springer L.N.M. 347 (1973)Google Scholar
  2. [2]
    Bredon, G.: Introduction to compact transformations groups. Academic Press 1972Google Scholar
  3. [3]
    Browder, W., Quinn, F.: A surgery theory for G-manifolds and stratified sets. In: Manifolds, Tokyo 1973Google Scholar
  4. [4]
    Cohen, M.: A course in simple homotopy theory. Graduate texts in Math. 10, Springer 1973Google Scholar
  5. [5]
    Illman, S.: Whitehead torsion and group actions. Annales Acad. Sci. Fennicae A. I. 588, 1974Google Scholar
  6. [6]
    Illman, S.: Smooth equivariant triangulations of G-manifolds. Preprint (1977)Google Scholar
  7. [7]
    Milnor, J.: Spaces having the homotopy type of a CW-complex. Transactions of the A.M.S. 90, 272–280 (1959)Google Scholar
  8. [8]
    Milnor, J.: Whitehead torsion. Bull. A.M.S. 72, 358–426 (1966)Google Scholar
  9. [9]
    torn Dieck, T., Kamps, K., Puppe, D.: Homotopietheorie. Springer L.N.M. 157 (1970)Google Scholar
  10. [10]
    Stöcker, R.: Whiteheadgruppe toplogischer Räume. Inventiones Math. 9, 271–278 (1970)Google Scholar
  11. [11]
    Wall, C. T. C.: Finiteness conditions for CW-complexes. Ann. of Math. 8l, 56–69 (1965)Google Scholar
  12. [12]
    Rothenberg, M.: Torsion invariants and finite transformation groups. PreprintGoogle Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Henning Hauschild
    • 1
  1. 1.Mathematisches Institut der Universität GöttingenGöttingenBundesrepublik Deutschland

Personalised recommendations