Advertisement

Mathematische Zeitschrift

, Volume 195, Issue 4, pp 581–600 | Cite as

The Kazhdan-Lusztig conjecture for generalized Verma modules

  • Luis G. Casian
  • David H. Collingwood
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barbasch, D.: Filtrations on Verma modules. Ann Sci. Ec. Norm. Super. IV. serie16, 489–494 (1983)Google Scholar
  2. 2.
    Beilinson, A.: Localization of representations of reductive Lie algebras. Proc. Intern. Congr. Math., Warsaw, p. 699–710, 1983Google Scholar
  3. 3.
    Beilinson, A., Bernstein, J.: Localisation deg-modules. C.R. Acad. Sci. Paris, Serie I,292, 15–18 (1981)Google Scholar
  4. 4.
    Beilinson, A., Bernstein, J., Deligne, P.: Analyse et topologie sur les espaces singuliers I. Asterisque100, Soc. math. de france 1982Google Scholar
  5. 5.
    Bernstein, J.: On the Kazhdan-Lusztig conjectures. AMS summer research conference, UC Santa Cruz, July 1986Google Scholar
  6. 6.
    Bernstein, J., Gelfand, I., Gelfand, S.: Schubert cells and cohomology of the spacesG/P. Russ. Math. Studies28, 1–26 (1973)Google Scholar
  7. 7.
    Boe, B.: Homomorphsims between generalized Verma modules, Ph.D. thesis, Yale University, 1983Google Scholar
  8. 8.
    Boe, B., Collingwood, D.: A multiplicity one theorem for holomorphically induced representations. Math. Z.192, 265–282 (1986)Google Scholar
  9. 9.
    Boe, B., Collingwood, D.: Interwining operators between holomorphically induced representations. Pac. J. Math.124, 73–84 (1986)Google Scholar
  10. 10.
    Boe, B., Collingwood, D.: A comparison theory for the structure of induced representations. J. Algebra94, 511–545 (1985)Google Scholar
  11. 11.
    Boe, T., Enright, T., Shelton, B.: Interwining operators for holomorphically induced representations. Pac. J. Math. To appearGoogle Scholar
  12. 12.
    Borel, A.: Lectures on the Riemann-Hilbert correspondence. Inst. Adv. Study. Princeton, 1984–85Google Scholar
  13. 13.
    Brylinski, J., Kashiwara, M.: Kazhdan-Lusztig conjecture and holonomic systems. Invent. Math.64, 387–410 (1981)Google Scholar
  14. 14.
    Casian, L., Collingwood, D.: Complex geometry and the asymptotics of Harish-Chandra modules for real reductive Lie groups I. Trans. Am. Math. Soc.300, 73–107, 1987Google Scholar
  15. 15.
    Casian, L., Collingwood, D.: Complex geometry and the asymptotics of Harish-Chandra modules for real reductive Lie groups III: estimates onn-homology. J. Algebra. To appearGoogle Scholar
  16. 16.
    Casian, L., Collingwood, D.: Weight filtrations for induced representations of real reductive Lie groups. Advances in Math. To appearGoogle Scholar
  17. 17.
    Collingwood, D.: Then-homology of Harish-Chandra modules: generalizing a theorem of Kostant. Math. Ann.272, 161–187 (1985)Google Scholar
  18. 18.
    Collingwood, D.: Representations of rank one Lie groups. Research Notes in Mathematics 137. London: Pitman Publishing 1985Google Scholar
  19. 19.
    Collingwood, D., Irving, R., Shelton, B.: Filtrations on generalized Verma modules for Hermitian symmetric pairs. J. für die Reine und Angew. Math. to appearGoogle Scholar
  20. 20.
    Deodhar, V.: On some geometric aspects for Bruhat orderings II: The parabolic analogue of Kazhdan-Lusztig polynomials. J Algebra, to appearGoogle Scholar
  21. 21.
    Dixmier, J.: Enveloping Algebras. Amsterdam: North-Holland 1977Google Scholar
  22. 22.
    Enright, T., Shelton, B.: Categories of highest weight modules: applications to classical Hermitian symmetric pairs. Memoirs of the AMS. To appearGoogle Scholar
  23. 23.
    Gelfand, I., MacPherson, R.: Verma modules and Schubert cells: a dictionary. Springer Lecture Notes924, 1–50 (1982)Google Scholar
  24. 24.
    Hecht, H., Miličić, D., Schmid, W., Wolf, J.: Localisation and standard modules for real semisimple Lie groups I: the duality theorem. Preprint 1986Google Scholar
  25. 25.
    Helgason, S.: Differential geometry. Lie groups and symmetric spaces. New York: Academic Press 1978Google Scholar
  26. 26.
    Hiller, S.: Geometry of Coxeter groups. Research Notes in Mathematics 54. London: Pitman Publishing 1982Google Scholar
  27. 27.
    Irving, R.: Projective modules in categoryO s: self duality. Trans. Am. Math. Soc.291, 701–732 (1985)Google Scholar
  28. 28.
    Jakobsen, H.: Basic covariant differential operators on Hermitian symmetric spaces. Ann. Ecol. Norm. Sup. To appearGoogle Scholar
  29. 29.
    Kazhdan, D., Lusztig, G.: Representations of Coxeter groups and Hecke algebras. Invent. Math.53, 165–184 (1979)Google Scholar
  30. 30.
    Kazhdan, D., Lusztig, G.: Schubert varieties and Poincare duality. Proc. Symp. Pure Math.36, 185–203 (1980)Google Scholar
  31. 31.
    Lepowsky, J.: A generalization of the Bernstein-Gelfand-Gelfand resolution. J. Algebra49, 496–511 (1977)Google Scholar
  32. 32.
    Lusztig, G., Vogan, D.: Singularities of closures ofK-orbits on flag manifold. Invent. Math.71, 365–370 (1983)Google Scholar
  33. 33.
    Milicic, D.: Classification of Harish-Chandra modules. Lecture at the Inst. Adv. Study, Princeton, Oct. 22, 1985Google Scholar
  34. 34.
    Vogan, D.: Irreducible characters of semisimple Lie groups III: Proof of the Kazhdan-Lusztig conjecture in the integral case. Invent. Math.71, 381–417 (1983)Google Scholar
  35. 35.
    Vogan, D.: Complex geometry and representations of reductive groups. ManuscriptGoogle Scholar
  36. 36.
    Casian, L.: The socle filtration of an induced representation with a unique irreducible submodule. Preprint, 1987Google Scholar
  37. 37.
    Beilinson, A., Ginsberg, V.: Mixed categories, Ext-duality and representations. Preprint, 1987Google Scholar
  38. 38.
    Irving, R., Shelton, B.: Loewy series and simple projective modules inO s. Pac. J. Math. To appearGoogle Scholar
  39. 39.
    Irving, R.: The socle filtration of a Verma module. Preprint, 1987Google Scholar
  40. 40.
    Irving, R.: BGG algebras. In preparationGoogle Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Luis G. Casian
    • 1
  • David H. Collingwood
    • 2
  1. 1.Massachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of MathematicsUniversity of WashingtonSeattleUSA

Personalised recommendations