Advertisement

Contributions to Mineralogy and Petrology

, Volume 96, Issue 4, pp 496–502 | Cite as

Titanian clinohumite and geikielite in marbles from the Bergell contact aureole

  • Reto Gieré
Article

Abstract

The assemblage titanian clinohumite+forsterite +spinel+calcite is widespread in marbles from the eastern Bergell contact aureole (Switzerland/Italy). The Bergell titanian clinohumites vary considerably in composition (TiO2: 0.19 to 2.05 wt%, F: 2.2 to 3.4 wt%). Electron microprobe analyses show that the titanian clinohumites contain less than detectable amounts of Co, Cu, Ni, Zn, Al, Cr and Cl. No trace of ferric iron could be detected by Moessbauer spectroscopy. Moreover, the Moessbauer spectra indicate that Fe2+ occurs only in one of the five octahedral positions in the crystal structure of the studied titanian clinohumite. Under the conditions of the contact metamorphism (600–650° C, 3 kb total pressure) the compositional variation along the exchange vector TiO2M−1 (OH,F)−2 takes place at constantxOH which is fixed by the pore fluid. Titanian clinohumite sometimes contains geikielite inclusions which strongly fractionate Fe and Mn relative to titanian clinohumite. The geikielites from the Bergell marbles are poor in Cr2O3, Fe2O3 and MnO, and thus different from those found in carbonatites, kimberlites and serpentinized ultramafic rocks.

Keywords

TiO2 Fe2O3 Calcite Mineral Resource Total Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bergstøl S (1972) The jacupirangite at Kodal, Vestfold, Norway. A potential magnetite, ilmenite and apatite ore. Miner Deposita 7:233–246Google Scholar
  2. Bradshaw R, Leake BE (1964) A chondrodite-humite-spinel marble from Sørfinnset, near Glomfjord, northern Norway. Mineral Mag 33:1066–1080Google Scholar
  3. Bucher-Nurminen K (1976) Chlorit-Spinell Paragenesen aus Dolomitmarmoren des Bergell-Ostrandes. Schweiz Mineral Petrogr Mitt 56:95–100Google Scholar
  4. Bucher-Nurminen K (1977) Hochmetamorphe Dolomitmarmore und zonierte metasomatische Adern im oberen Val Sissone (Provinz Sondrio, Norditalien). Ph.D. thesis, No. 5910, ETH ZürichGoogle Scholar
  5. Bucher-Nurminen K (1982) On the mechanism of contact aureole formation in dolomitic country rock by the Adamello intrusion (northern Italy). Am Mineral 67:1101–1117Google Scholar
  6. Cornelius HP (1915) Geologische Beobachtungen in den italienischen Teilen des Albigna-Disgraziamassivs. Geol Rundsch 6:166–177Google Scholar
  7. Cressey G (1986) Geikielite and perovskite in serpentine-brucite marble from Baltistan, Northern Areas (Kashmir), Pakistan. Mineral Mag 50:345–346Google Scholar
  8. Crook T, Jones BM (1906) Geikielite and the ferro-magnesian titanates. Mineral Mag 14:160–166Google Scholar
  9. Czamanske GK, Mihalik P (1972) Oxidation during magmatic differentiation. Finnmarka complex, Oslo area, Norway. Part I. The opaque oxides. J Petrol 13:493–509Google Scholar
  10. De Quervain F (1938) Zur Kenntnis des Titanklinohumites (Titanolivin). Schweiz Mineral Petrogr Mitt 18:591–605Google Scholar
  11. Déverin L (1937) Composition minéralogique d'un calcaire à silicates de la bordure du massif de Bergell. Gisements de humites sur territoire Suisse. Schweiz Mineral Petrogr Mitt 17:531Google Scholar
  12. Dietrich H, Koller F, Richter W, Kiesl W (1986) Petrologie und Geochemie des Rodingitvorkommens vom Islitzfall (Dorfertal, Hohe Tauern). Schweiz Mineral Petrogr Mitt 66:163–192Google Scholar
  13. Efremov N (1954) Geikielite from Mount Jemorakly-Tube, North Caucasus, USSR. Am Mineral 39:395–396Google Scholar
  14. Ehlers K, Hoinkes G (1987) Titanian chondrodite and clinohumite in marbles from the Oetztal crystalline basement. Mineral Petrol 36:13–25Google Scholar
  15. Engi M, Lindsley DH (1980) Stability of titanian clinohumite: experiments and thermodynamic analysis. Contrib Mineral Petrol 72:415–424Google Scholar
  16. Evans BW, Trommsdorff V (1983) Fluorine hydroxyl titanian clinohumite in Alpine recrystallized garnet peridotite: compositional controls and petrologic significance. Am J Sci 283A:355–369Google Scholar
  17. Gieré R (1984) Geologie and Petrographie des Bergell Ostrandes. Diploma thesis, ETH ZürichGoogle Scholar
  18. Gieré R (1985) Metasedimente der Suretta-Decke am Ost- und Südostrand der Bergeller Intrusion: Lithostratigraphische Korrelation und Metamorphose. Schweiz Mineral Petrogr Mitt 65:57–78Google Scholar
  19. Haggerty SE (1975) The chemistry and genesis of opaque minerals in kimberlite. Phys Chem Earth 9:295–307Google Scholar
  20. Haggerty SE (1976) Opaque mineral oxides in terrestrial igneous rocks. In: Rumble DH (ed) Oxide minerals. Mineral Soc Am Short Course Notes 3:Hg 101–Hg 300Google Scholar
  21. Jones NW, Ribbe PH, Gibbs GV (1969) Crystal chemistry of the humite minerals. Am Mineral 54:391–411Google Scholar
  22. Kashin SA (1937) Metamorphism of chromespinellids in the Camel Mountains (southern Urals). In: Fersman AE, Betekhtin AG (eds) A symposium on the chromite deposits of the USSR. Acad Sci USSR, Lomonosov Inst (in Russian)Google Scholar
  23. Mitchell RH (1973) Magnesian ilmenite and its role in kimberlite petrogenesis. J Geol 81:301–311Google Scholar
  24. Mitchell RH (1977) Geochemistry of magnesian ilmenites from kimberlites in South Africa and Lesotho. Lithos 10:29–37Google Scholar
  25. Mitchell RH (1978) Manganoan magnesian ilmenite and titanian clinohumite from the Jacupiranga carbonatite, São Paulo, Brazil. Am Mineral 63:544–547Google Scholar
  26. Moore JN, Kerrick DM (1976) Equilibria in siliceous dolomites of the Alta Aureole, Utah. Am J Sci 276:502–524Google Scholar
  27. Müller WF, Wenk HR (1978) Mixed-layer characteristics in real humite structures. Acta Crystallogr A34:607–609Google Scholar
  28. Murdoch J, Fahey JJ (1949) Geikielite, a new find from California. Am Mineral 34:835–838Google Scholar
  29. Muthuswami TN (1958) Clinohumite, Sausar series, Bhandara District, India. Proc Indian Acad Sci 48A:9Google Scholar
  30. Prins P (1972) Composition of magnetite from carbonatites. Lithos 5:227–240Google Scholar
  31. Rankama K (1938) On the mineralogy of some members of the humite group found in Finland. Bull Comm Géol Finl 21:81Google Scholar
  32. Ribbe PH (1979) Titanium, fluorine, and hydroxyl in the humite minerals. Am Mineral 64:1027–1035Google Scholar
  33. Ribbe PH, Gibbs GV, Jones NW (1968) Cation and anion substitutions in the humite minerals. Mineral Mag 36:966–975Google Scholar
  34. Rice JM (1980) Phase equilibria involving humite minerals in impure dolomitic limestones. Part I. Calculated stability of clinohumite. Contrib Mineral Petrol 71:219–235Google Scholar
  35. Robinson K, Gibbs GV, Ribbe PH (1973) The crystal structures of the humite minerals. IV. Clinohumite and titanoclinohumite. Am Mineral 58:43–49Google Scholar
  36. Sahama TG (1953) Mineralogy of the humite group. Ann Acad Sci Fenn Ser A3 31:1Google Scholar
  37. Trommsdorff V (1966) Beobachtungen zur Paragenese Forsterit (Klinohumit, Chrondrodit)-Klinochlor in metamorphen Dolomitgesteinen des Lepontins. Schweiz Mineral Petrogr Mitt 46:421–429Google Scholar
  38. Trommsdorff V, Evans BW (1980) Titanian hydroxyl-clinohumite: formation and breakdown in antigorite rocks (Malenco, Italy). Contrib Mineral Petrol 72:229–242Google Scholar
  39. Wenk E (1963) Klinohumit und Chondrodit in Marmoren der Tessineralpen und der Disgrazia-Gruppe. Schweiz Mineral Petrogr Mitt 43:287–293Google Scholar
  40. White TJ, Hyde BG (1982) Electron microscope study of the humite minerals. I. Mg-rich specimens. Phys Chem Minerals 8:55–63Google Scholar
  41. Wise WS (1959) An occurrence of geikielite. Am Mineral 44:879–882Google Scholar
  42. Zhuravleva LN, Berezina LA, Gulin YEN (1976) Geochemistry of rare and radioactive elements in apatite-magnetite ores in alkali-ultrabasic complexes. Geochem Int 13:147–166Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Reto Gieré
    • 1
  1. 1.Institut für Mineralogie und PetrographieETH-ZentrumZürichSwitzerland

Personalised recommendations