Eifelite, KNa3Mg4Si12O30, a new mineral of the osumilite group with octahedral sodium

  • K. Abraham
  • W. Gebert
  • O. Medenbach
  • W. Schreyer
  • G. Hentschel


Eifelite of variable composition is uniaxial positive withn0 near 1.543 andne near 1.544, a between 10.14 and 10.15 Å, andc about 14.22 Å, space groupP 6/m 2/c 2/c. There is a complete series of solid solution between the eifelite end member KNa3Mg4Si12O30 and roedderite, KNaMg5Si12O30, following the 2 Na⇌Mg substitution. Both eifelite and roedderite have milarite-type structures, but Na is always in six-coordinated sites: In roedderite Na occupies solely a newly defined B′[6]-position which is slightly displaced alongc from the ideal B[9]-position lying on the (001/2)-mirror plane in K2Mg5Si12O30. In eifelite Na is located both inB[6] and in theA[6]-positions, where it partially replaces Mg. Eifelite has the highest cation occupancy of all osumilite group minerals known thus far.

Both eifelite and roedderite occur in vesicles of contact metamorphosed basement xenoliths ejected with the leucite tephrite lava of the Quaternary Bellerberg volcano in the Eifel, West Germany. They are considered to be precipitates from highly alkaline, MgSi-rich, but Al-deficient gas phases that originated through interaction of gaseous igneous differentiates with the xenoliths.


Sodium Solid Solution Mineral Resource Variable Composition Group Mineral 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abraham K, Schreyer W (1973) Petrology of a ferruginous hornfels from Riekensglück, Harz Mountains, Germany. Contrib Mineral Petrol 40:275–292Google Scholar
  2. Abraham K, Gebert W, Medenbach O, Schreyer W, Hentschel G (1980) KNa2Mg4.5 [Si12O30], ein neues Mineral der Milaritgruppe aus der Eifel, mit Natrium in Oktaederposition. Fortschr Mineral 58, Beih 1:3–4Google Scholar
  3. Bakakin VV, Balko VP, Solovyeva LP (1975) Crystal structures of milarite, armenite, and sogdianite. Sov Phys Crystallogr 19:460–62Google Scholar
  4. Belov NV, Tarkhova TN (1951) Crystal structure of milarite. Trudy Inst Krist, Akad Nauk SSSR 6:83–140 (in Russ)Google Scholar
  5. Berg JH, Wheeler EP, II (1976) Osumilite of deep-seated origin in the contact aureole of the anorthositic Nain complex, Labrador. Am Mineral 61:29–37Google Scholar
  6. Brauns R (1911) Die kristallinen Schiefer des Laacher-See-Gebietes und ihre Umbildung zu Sanidinit. E Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, p 61Google Scholar
  7. Bunch TE, Fuchs LH (1969) Yagiite, a new sodium-magnesium analogue of osumilite. Am Mineral 54:14–18Google Scholar
  8. Černý P, Hawthorne FC, Jarosewich E (1980) Crystal chemistry of milarite. Can Mineral 18:41–57Google Scholar
  9. Cradwick ME, Taylor HFW (1972) Crystal structure of Na2Mg2Si6O15. Acta Crystallogr B 28:3583–3587Google Scholar
  10. Fleischer M (1981) Glossary of mineral species. Mineralogical Record, Tucson, Arizona, USAGoogle Scholar
  11. Forbes WC, Baur WH, Khan AA (1972) Crystal chemistry of milaritetype minerals. Am Mineral 57:463–472Google Scholar
  12. Frechen J (1947) Vorgänge der Sanidinit-Bildung im Laacher-Seegebiet. Fortschr Mineral 26:147–166Google Scholar
  13. Hentschel G, Abraham K, Schreyer W (1977) Roedderit und Osumilith aus dem Laacher Vulkangebiet. Fortschr Mineral Beitr 1 55, 43–44Google Scholar
  14. Hentschel G, Abraham K, Schreyer W (1980) First terrestrial occurrence of roedderite in volcanic ejecta of the Eifel, Germany. Contrib Mineral Petrol 73:127–130Google Scholar
  15. Ito T, Morimoto N, Sadanaga R (1952) The crystal structure of milarite. Acta Crystallogr 5:209–213Google Scholar
  16. Khan AA, Baur WH, Forbes WC (1971) Synthetic magnesium merrihueite, dipotassium pentamagnesium dodecasilicate: a tetrahedral magnesiosilicate framework crystal structure. Acta Crystallogr B28:267–272Google Scholar
  17. Medenbach O (1980) Ein neuer Mikro-Refraktometer-Spindel-Tisch. Fortschr Mineral 58, Bh 1, 90–91Google Scholar
  18. Schairer JF, Yoder HS, Keene AG (1954) The systems Na2O- MgO-SiO2 and Na2O-FeO-SiO2. Carnegie Inst Washington, Yearb 53:123–125Google Scholar
  19. Schreyer W, Hentschel G, Abraham K (1983) Osumilith in der Eifel und die Verwendung dieses Minerals als petrogenetischer Indikator. Tschermaks Mineral Petrogr Mitt (in press)Google Scholar
  20. Seifert F, Schreyer W (1966) Fluide Phasen im System K2O- MgO-SiO2-H2O und ihre mögliche Bedeutung für die Entstehung ultrabasischer Gesteine. Ber Bunsenges Phys Chem 70:1045–1050Google Scholar
  21. Seifert F, Schreyer W (1968) Die Möglichkeit der Entstehung ultrabasischer Magmen bei Gegenwart geringer Alkalimengen. Geol Rundsch 57:349–362Google Scholar
  22. Witte P (1975) Synthese und Stabilität von Amphibolphasen und wasserfreien Na-Mg-Silikaten im System Na2O- MgO-SiO2-H2O, die Kompatibilitätsbeziehungen innerhalb des Sireichen Teils des quaternären Systems oberhalb 600° C im Druckbereich l atm-5 kb\(P_{H_2 O} \) und ihre petrologische Bedeutung. Diss. Ruhr-Universität Bochum, p 256Google Scholar
  23. Wörner G, Schmincke H-U, Schreyer W (1982) Crustal xenoliths from the Quaternary Wehr volcano (East Eifel). Neues Jahrb Mineral Abh 144:29–55Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • K. Abraham
    • 1
  • W. Gebert
    • 1
  • O. Medenbach
    • 1
  • W. Schreyer
    • 1
  • G. Hentschel
    • 2
  1. 1.Institut für MineralogieRuhr-UniversitätBochum 1
  2. 2.Hessisches Landesamt für BodenforschungLeberberg 9Federal Republic of Germany

Personalised recommendations