Advertisement

Mathematische Zeitschrift

, Volume 195, Issue 2, pp 197–204 | Cite as

On the extension ofL2 holomorphic functions

  • Takeo Ohsawa
  • Kensho Takegoshi
Article

Keywords

Holomorphic Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andreotti, A., Vesentini, E.: Carleman estimates for the Laplace-Beltrami equation on complex manifolds. IHES. Publ.25, 313–362 (1965)Google Scholar
  2. 2.
    Bartolomeis, P.: Fibrati positive e teorieL 2 per l'operatore\(\bar \partial \), Raccolta di saminari del Dipartomento di Matematica dell'Universita degli studi della Calabria 4. Atti del Convegno: “Geometria Analitica e Analisi Complessa”, 1984Google Scholar
  3. 3.
    Calabi, E., Vesentini, E.: On compact, locally symmetric Kähler manifolds. Ann. Math.71, 472–507 (1960)Google Scholar
  4. 4.
    Demailly, J.P.: Scindage holomorphe d'un morphisme de fibrés vectoriels semi-positifs avec estimationsL 2. Lecture Notes in Math.919, 77–107 (1982) Berlin Heidelberg New York: Springer 1982Google Scholar
  5. 5.
    Diederich, K.: Das Randverhalten der Bergmanschen Kernfunktion und Metrik in streng pseudokonvexen Gebieten. Math. Ann.187, 9–36 (1970)Google Scholar
  6. 6.
    Diederich, K., Herbort, G., Ohsawa, T.: The Bergman kernel on uniformly extendable pseudoconvex domains. Math. Ann.273, 471–478 (1986)Google Scholar
  7. 7.
    Donnelly, H., Fefferman, C.:L 2-cohomology and index theorem for the Bergman metric. Ann. Math.118, 593–618 (1983)Google Scholar
  8. 8.
    Donnelly, H., Xavier, F.: On the differential form spectrum of negatively curved Riemann manifolds. Am. Math. J.106, 169–185 (1984)Google Scholar
  9. 9.
    Doquier, F., Grauert, H.: Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten. Math. Ann.140, 94–123 (1960)Google Scholar
  10. 10.
    Forster, O., Ohsawa, T.: Complete intersections with growth conditions, to appear in Advanced study in pure math.Google Scholar
  11. 11.
    Griffiths, P., Harris, J.: Principles of algebraic geometry, Pure and Applied Math. New York: J. Wiley 1978Google Scholar
  12. 12.
    Gunning, R.C., Rossi, H.: Analytic functions of several complex variables. Englewood Cliffs, N.J.: Prentice Hall Inc. 1965Google Scholar
  13. 13.
    Hörmander, L.:L 2 estimate and existence theorems for the\(\bar \partial \) operator. Acta Math.113, 89–152 (1965)Google Scholar
  14. 14.
    Hörmander, L.: An introduction to complex analysis in several variables. Princeton: Van Nostrand 1966Google Scholar
  15. 15.
    Lascoux, A., Berger, M.: Variétés Kähleriennes compactes Lect. Notes Math.154, Berlin Heidelberg New York: Springer 1970Google Scholar
  16. 16.
    Nakano, S.: On complex analytic vector bundles. J. Math. Soc. Japan7, 1–12 (1955)Google Scholar
  17. 17.
    Nakano, S.: Extension of holomorphic-functions with growth conditions. Publ. RIMS, Kyoto Univ.22, 247–258 (1986)Google Scholar
  18. 18.
    Nishimura, Y.: Problème d'extension dans la théorie des fonctions entières d'ordre fini. J. Math. Kyoto Univ.20, 635–650 (1980)Google Scholar
  19. 19.
    Ohsawa, T.: Isomorphism theorems for cohomology groups of weakly 1-complete manifolds. Publ. RIMS. Kyoto Univ.18, 191–232 (1982)Google Scholar
  20. 20.
    Ohsawa, T.: Vanishing theorems on complete Kähler manifolds. Publ. RIMS. Kyoto Univ.20, 21–38 (1984)Google Scholar
  21. 21.
    Ohsawa, T.: Boundary behavior of the Bergman kernel function on pseudoconvex domains. Publ. RIMS. Kyoto Univ.20, 897–902 (1984)Google Scholar
  22. 22.
    Yoshioka, T.: Cohomologie à estimationL 2 avec poids plurisousharmoniques et extension des fonctions holomorphes avec contrôle de la croissance. Ohsaka J. Math.19, 787–813 (1982)Google Scholar
  23. 23.
    Weil, A.: Introduction á l'étude des varietés Kähleriennes. Act. Sci. Ind.1267, Paris: Hermann 1958Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Takeo Ohsawa
    • 1
  • Kensho Takegoshi
    • 1
  1. 1.Research Institute of Mathematical SciencesKyoto UniversityKyotoJapan

Personalised recommendations