Journal of Mathematical Chemistry

, Volume 5, Issue 3, pp 203–248 | Cite as

Sensitivity analysis of complex kinetic systems. Tools and applications

  • Tamás Turányi
Review

Abstract

Sensitivity analysis investigates the effect of parameter change on the solution of mathematical models. In chemical kinetics, models are usually based on differential equations and the results are concentration-time curves, reaction rates, and various kinetic features of the reaction. This review discusses in detail the concentration sensitivity, rate sensitivity, and feature sensitivity analysis of spatially homogeneous constant-parameter reaction systems. Sensitivity analyses of distributed parameter systems and of stochastic systems are also briefly described. Special attention is paid to the interpretation of sensitivity coefficients which can provide information about the importance and interconnection of parameters and variables. Applications of sensitivity analysis to uncertainty analysis, parameric scaling, parameter estimation, experimental design, stability analysis, repro-modeling, and investigation and reduction of complex reaction mechanisms are discussed profoundly.

Keywords

Sensitivity Analysis Parameter Estimation Stability Analysis Reaction Mechanism Reaction System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J.-T. Hwang, in:Chemical Kinetics of Small Organic Radicals, Vol. 2, ed. Z.B. Alfassi (CRC Press, Boca Raton, 1988), p. 149.Google Scholar
  2. [2]
    M. Frenklach, in:Combustion Chemistry, ed. W.C. Gardiner, Jr. (Springer, New York, 1984).Google Scholar
  3. [3]
    D. Edelson, Science 214 (1981)981.Google Scholar
  4. [4]
    C.K. Westbrook and F.L. Dryer, Prog. Energy Combust. Sci. 10 (1984)1.Google Scholar
  5. [5]
    M.J. Pilling, in:Modern Gas Kinetics, ed. M.J. Pilling and I.W.M. Smith (Blackwell, Oxford, 1987), p. 303.Google Scholar
  6. [6]
    P. Érdi and J. Tóth,Mathematical Models of Chemical Reactions: Theory and Applications of Deterministic and Stochastic Models (Manchester University Press, Manchester, 1989).Google Scholar
  7. [7]
    J.I. Steinfeld, J.S. Francisco and W.L. Hase,Chemical Kinetics and Dynamics (Prentice-Hall, Englewood Cliffs, NJ, 1989).Google Scholar
  8. [8]
    H. Rabitz, M. Kramer and D. Dacol, Ann. Rev. Phys. Chem. 34 (1983)419.Google Scholar
  9. [9]
    J.W. Tilden, V. Costanza, G.J. McRae and J.H. Seinfeld, in:Modelling of Chemical Reaction Systems, ed. K.H. Ebert, P. Deuflhard and W. Jäger (Springer, Berlin, 1981), p. 69.Google Scholar
  10. [10]
    R.I. Cukier, H.B. Levine and K.E. Shuler, J. Comp. Phys. 26 (1978)1.Google Scholar
  11. [11]
    H. Rabitz, Comp. Chem. 5 (1981)167.Google Scholar
  12. [12]
    M.A. Kramer, H. Rabitz, J.M. Calo and R.J. Kee, Int. J. Chem. Kinet. 16 (1984)559.Google Scholar
  13. [13]
    D. Edelson and H. Rabitz, in:Oscillations and Traveling Waves in Chemical Systems, ed. R.J. Field and M. Burger (Wiley, New York, 1987), p. 193.Google Scholar
  14. [14]
    H. Rabitz, Chem. Rev. 87 (1987)101.Google Scholar
  15. [15]
    A.K. Hayashi and T. Fujiwara, Mem. Faculty of Eng., Nagoya University 38 (1986)86.Google Scholar
  16. [16]
    H. Rabitz, Science 246 (1989)221.Google Scholar
  17. [17]
    H. Rabitz, Physica 20D (1986)67.Google Scholar
  18. [18]
    R. Tomović and M. Vukobratović,General Sensitivity Theory (Elsevier, New York, 1972).Google Scholar
  19. [19]
    P.M. Frank,Introduction to System Sensitivity Theory (Academic Press, New York, 1978).Google Scholar
  20. [20]
    L. Eno and H. Rabitz, Adv. Chem. Phys. 51 (1982)177.Google Scholar
  21. [21]
    S.H. Shi and H. Rabitz, Comp. Phys. Rep. 10 (1989)3.Google Scholar
  22. [22]
    A.M. Dunker, J. Chem. Phys. 81 (1984)2385.Google Scholar
  23. [23]
    A.M. Dunker, Atm. Environ. 15 (1981)1155.Google Scholar
  24. [24]
    S.N. Pandis and J.H. Seinfeld, J. Geophys. Res. 94 (1989)1105.Google Scholar
  25. [25]
    M.C. Dodge and T.A. Hecht, Int. J. Chem. Kinet. S1 (1975)155.Google Scholar
  26. [26]
    J.O. Olsson and L.L. Andersson, Combust. Flame 67 (1987)99.Google Scholar
  27. [27]
    K.H. Ebert, H.J. Ederer and G. Isbam, Angew. Chem. Int. Ed. Engl. 19 (1980)333.Google Scholar
  28. [28]
    A. Lifshitz and M. Frenklach, Int. J. Chem. Kinet. 12 (1980)159.Google Scholar
  29. [29]
    R.J. Gelinas and P.D. Skewes-Cox, J. Phys. Chem. 81 (1977)2468.Google Scholar
  30. [30]
    M.W. Slack, Combust. Flame 28 (1977)241.Google Scholar
  31. [31]
    T. Koike and W.C. Gardiner, Jr., J. Phys. Chem. 84 (1980)2005.Google Scholar
  32. [32]
    J. Warnatz,18th Symp (Int.) on Combustion (1981), p. 369.Google Scholar
  33. [33]
    D. Miller and M. Frenklach, Int. J. Chem. Kinet. 15 (1983)677.Google Scholar
  34. [34]
    M. Frenklach and D.L. Miller, AIChE J. 31 (1985)498.Google Scholar
  35. [35]
    M. Frenklach, Combust. Flame 58 (1984)69.Google Scholar
  36. [36]
    R. Derwent and Ø. Hov, J. Geophys. Res. (Atm.) 93 (1988)5185.Google Scholar
  37. [37]
    F.A. Buhman, V.G. Melamed, L.S. Polak, Yu.L. Haut and E.N. Chervochkin, in:Primenenie Vychislitel'noi Matematiki v Himicheskoi i Fizicheskoi Kinetike, ed. L.S. Polak (Nauka, Moscow, 1969), p. 12.Google Scholar
  38. [38]
    J.-T. Hwang, Int. J. Chem. Kinet. 15 (1983)959.Google Scholar
  39. [39]
    J.-T. Hwang, E.P. Dougherty, S. Rabitz and H. Rabitz, J. Chem. Phys. 69 (1978)5180.Google Scholar
  40. [40]
    J.-T. Hwang, Proc. Natl. Sci. Council B. ROC 6 (1982)20.Google Scholar
  41. [41]
    T.P. Coffee and J.M. Heimerl, Combust. Flame 50 (1983)323.Google Scholar
  42. [42]
    R.P. Dickinson and R.J. Gelinas, J. Comp. Phys. 21 (1976)123.Google Scholar
  43. [43]
    E.P. Dougherty, J.-T. Hwang and H. Rabitz, J. Chem. Phys. 71 (1979)1794.Google Scholar
  44. [44]
    E.P. Dougherty and H. Rabitz, J. Chem. Phys. 72 (1980)6571.Google Scholar
  45. [45]
    M.A. Kramer, J.M. Calo and H. Rabitz, Appl. Math. Modelling 5 (1981)432.Google Scholar
  46. [46]
    R.W. Atherton, R.B. Schainker and E.R. Ducot, AIChE J. 21 (1975)441.Google Scholar
  47. [47]
    J.R. Leis and M.A. Kramer, ACM Trans. Math. Softw. 14 (1988)45.Google Scholar
  48. [48]
    J.R. Leis and M.A. Kramer, ACM Trans. Math. Softw. 14 (1988)61.Google Scholar
  49. [49]
    J.R. Leis and M.A. Kramer, Comput. Chem. Eng. 9 (1985)93.Google Scholar
  50. [50]
    M. Caracotsios and W.E. Stewart, Comput. Chem. Eng. 9 (1985)359.Google Scholar
  51. [51]
    P. Valkó and S. Vajda, Comp. Chem. 8 (1984)255.Google Scholar
  52. [52]
    M. Koda, A.H. Dogru and J.H. Seinfeld, J. Comp. Phys. 30 (1979)25Google Scholar
  53. [53]
    S. Vajda, P. VaIkó and T. Turányi, Int. J. Chem. Kinet. 17 (1985)55.Google Scholar
  54. [54]
    S. Vajda and T. Turányi, J. Phys. Chem. 90 (1986)1664.Google Scholar
  55. [55]
    Y. Reuven, M.D. Smooke and H. Rabitz, J. Comp. Phys. 64 (1986)27.Google Scholar
  56. [56]
    O.A. Asbjornsen, in:Proc. Conf. CHEMPLANT'80, Hévíz, Hungary (Budapest, 1980) Vol. 2, p. 723.Google Scholar
  57. [57]
    L. Györgyi, T. Deutsch and E. Körös, Int. J. Chem. Kinet. 19 (1987)35.Google Scholar
  58. [58]
    L. Györgyi, T. Deutsch and E. Körös, Int. J. Chem. Kinet. 19 (1987)435.Google Scholar
  59. [59]
    I.M. Thomas and C. Kiparissides, J. Appl. Pol. Sci. 29 (1984)2195.Google Scholar
  60. [60]
    A.M. Dunker, Atm. Environ. 20 (1986)479.Google Scholar
  61. [61]
    S. Vajda, H. Rabitz and R.A. Yetter, Combust. Flame, in press.Google Scholar
  62. [62]
    T.M. Zamis, L.J. Parkhurst and G.A. Gallup, Comput. Chem. 13 (1989)165.Google Scholar
  63. [63]
    H. Freund and W.N. Olmstead, Int. J. Chem. Kinet. 21 (1989)561.Google Scholar
  64. [64]
    J.-T. Hwang, Proc. Natl. Sci. Council B. ROC 6 (1982)37.Google Scholar
  65. [65]
    J.-T. Hwang, Proc. Natl. Sci. Council B. ROC 6 (1982)166.Google Scholar
  66. [66]
    J.-T. Hwang and Y.-S. Chang, Proc. Natl. Sci. Council B. ROC 6 (1982)308.Google Scholar
  67. [67]
    C. Seigneur, G. Stephanopoulos and R.W. Carr, Jr., Chem. Eng. Sci. 37 (1982)845.Google Scholar
  68. [68]
    O. Gautier, R.W. Carr, Jr. and C. Seigneur, Int. J. Chem. Kinet. 17 (1985)1347.Google Scholar
  69. [69]
    E.P. Dougherty and H. Rabitz, Int. J. Chem. Kinet. 11 (1979)1237.Google Scholar
  70. [70]
    D. Edelson, L.C. Kaufman and D.D. Warner, in:ACS Symp. Ser. No. 173: Supercomputers in Chemistry, ed. P. Lykos and I. Shavitt (1981).Google Scholar
  71. [71]
    D. Edelson, Int. J. Chem. Kinet. 13 (1981)1175.Google Scholar
  72. [72]
    R.A. Yetter, F.L. Dryer and H. Rabitz, Combust. Flame 59 (1985)107.Google Scholar
  73. [73]
    M.J. Pilling and M.J.C. Smith, J. Phys. Chem. 89 (1985)4713.Google Scholar
  74. [74]
    R.A. Yetter, L.A. Eslava, F.L. Dryer and H. Rabitz, J. Phys. Chem. 88 (1984)1497.Google Scholar
  75. [75]
    D. Edelson and D.L. Allara, Int. J. Chem. Kinet. 12 (1980)605.Google Scholar
  76. [76]
    M.A. Kramer, H. Rabitz and J.M. Calo, Appl. Math. Modelling 8 (1984)341.Google Scholar
  77. [77]
    J.-T. Hwang, Proc. Natl. Sci. Council B. ROC 6 (1982)270.Google Scholar
  78. [78]
    S.-Y. Cho and G.R. Carmichael, Atm. Environ. 20 (1986)1959.Google Scholar
  79. [79]
    D. Edelson, J. Phys. Chem. 87 (1983)1204.Google Scholar
  80. [80]
    R. Larter, J. Phys. Chem. 87 (1983)3114.Google Scholar
  81. [81]
    D. Edelson and V.M. Thomas, J. Phys. Chem. 85 (1981)1555.Google Scholar
  82. [82]
    R. Latter, H. Rabitz and M. Kramer, J. Chem. Phys. 80 (1984)4120.Google Scholar
  83. [83]
    R. Latter and B.L. Clarke, J. Chem. Phys. 83 (1985)108.Google Scholar
  84. [84]
    R.M. Hedges, Jr. and H. Rabitz, J. Chem. Phys. 82 (1985)3674.Google Scholar
  85. [85]
    R.A. Yetter, H. Rabitz, F.L. Dryer, R.C. Brown and C.E. Kolb, Combust. Flame, submitted.Google Scholar
  86. [86]
    R.A. Yetter, S.Y. Cho, H. Rabitz, F.L. Dryer, R.C. Brown and C.E. Kolb,22nd Symp. (Int.) on Combustion (1988), p. 919.Google Scholar
  87. [87]
    R.A. Yetter, H. Rabitz, F.L. Dryer, R.G. Maki and R.B. Klemm, J. Chem. Phys. 91 (1989)4088.Google Scholar
  88. [88]
    R.A. Yetter and H. Rabitz, Modeling and sensitivity analysis of homogeneous, gas-phase, nitromethane decomposition, to be published.Google Scholar
  89. [89]
    J.-T. Hwang, J. Chin. Chem. Soc. 32 (1985)253.Google Scholar
  90. [90]
    W. Schellong and C. Schuhler, Z. phys. Chemie (Leipzig) 267 (1986)15.Google Scholar
  91. [91]
    T. Turányi, T. Bérces and J. Tóth, J. Math. Chem. 2 (1988)401.Google Scholar
  92. [92]
    H. Rabitz and M.D. Smooke, J. Phys. Chem. 92 (1988)1110.Google Scholar
  93. [93]
    M.D. Smooke, H. Rabitz, Y. Reuven and F.L. Dryer, Combust. Sci. Tech. 59 (1988)295.Google Scholar
  94. [94]
    C. Wulfman and H, Rabitz, J. Phys. Chem. 90 (1986)2264.Google Scholar
  95. [95]
    L.M. Hubbard, C. Wulfman and H. Rabitz, J. Phys. Chem. 90 (1986)2273.Google Scholar
  96. [96]
    R.I. Cukier, C.M. Fortuin, K.E. Shuler, A.G. Petschek and J.H. Schaibly, J. Chem. Phys. 59 (1973)3873.Google Scholar
  97. [97]
    J.H. Schaibly and K.E. Shuler, J. Chem. Phys. 59 (1973)3879.Google Scholar
  98. [98]
    R.I. Cukier, J.H. Schaibly and K.E. Shuler, J. Chem. Phys. 63 (1975)1140.Google Scholar
  99. [99]
    R.I. Cukier, H.B. Levine and K.E. Shuler, J. Phys. Chem. 81 (1977)2365.Google Scholar
  100. [100]
    K. Kanatani, Inform. Control 47 (1980)37.Google Scholar
  101. [101]
    T.M. Grigoryeva, Yu.A. Kolbanovskii, A.A. Levickii, L.S. Polak and R.L. Tatuzov, Kinet. Katal. 26 (1985)1307.Google Scholar
  102. [102]
    M. Koda, G.J. McRae and J.H. Seinfeld, Int. J. Chem. Kinet. 11 (1979)427.Google Scholar
  103. [103]
    G.J. McRae, J.W. Tilden and J.H. Seinfeld, Comput. Chem. Eng. 6 (1982)15.Google Scholar
  104. [104]
    T.H. Pierce, R.I. Cukier and J.L. Dye, Math. Biosci. 56 (1981)175.Google Scholar
  105. [105]
    V.G. Gorskii, V.I. Dimitrov and V.I. Golovichev, Him. Fiz. (1983)1046.Google Scholar
  106. [106]
    A.A. Boni and R.C. Penner, Combust. Sci. Tech. 15 (1977)99.Google Scholar
  107. [107]
    A.H. Falls, G.J. McRae and J.H. Seinfeld, Int. J. Chem. Kinet. 11 (1979)1137.Google Scholar
  108. [108]
    J.W. Tilden and J.H. Seinfeld, Atm. Environ. 16 (1982)1357.Google Scholar
  109. [109]
    T. O'Brien and T.H. Pierce, Chem. Phys. Processes Combust. (1981)77.Google Scholar
  110. [110]
    E. Joos, A. Mendonça and C. Seigneur, Atm. Environ. 21 (1987)1331.Google Scholar
  111. [111]
    T.H. Pierce and R.I. Cukier, J. Comp. Phys. 41 (1981)427.Google Scholar
  112. [112]
    V. Costanza and J.H. Seinfeld, J. Chem. Phys. 74 (1981)3852.Google Scholar
  113. [113]
    R.R. Lucchese, J. Chem. Phys. 83 (1985)3118.Google Scholar
  114. [114]
    C.B. Smith and R.R. Lucchese, J. Chem. Phys. 87 (1987)4170.Google Scholar
  115. [115]
    R.S. Stolarski, D.M. Butler and R.D. Rundel, J. Geophys. Res. 83 (1978)3074.Google Scholar
  116. [116]
    R.S. Stolarski and A.R. Douglass, J. Geophys. Res. 91 (1986)7853.Google Scholar
  117. [117]
    D.H. Ehhalt, J.S. Chang and D.M. Butler, J. Geophys. Res. 84 (1979)7889.Google Scholar
  118. [118]
    R.G. Derwent, Atm. Environ. 21 (1987)1445.Google Scholar
  119. [119]
    W.J. Ray, Jr., Biochem. 22 (1983)4625.Google Scholar
  120. [120]
    T. Turányi, T. Bérces and S. Vajda, Int. J. Chem. Kinet. 21 (1989)83.Google Scholar
  121. [121]
    T. Turányi, Acta Chim. Hung., to be published.Google Scholar
  122. [122]
    T. Turányi, New J. Chem., in press.Google Scholar
  123. [123]
    P.C. Fife, J. Phys. Chem. 85 (1981)2861.Google Scholar
  124. [124]
    D. Edelson, J. Phys. Chem. 85 (1981)2861.Google Scholar
  125. [125]
    M.A. Kramer, H. Rabitz and J.M. Calo, Appl. Math. Modelling 8 (1984)323.Google Scholar
  126. [126]
    R. Larter, J. Chem. Phys. 85 (1986)7127.Google Scholar
  127. [127]
    J.G.B. Beumeé, L. Eno and H. Rabitz, J. Comp. Phys. 57 (1985)318.Google Scholar
  128. [128]
    M. Skumanich and H. Rabitz, Commun. in J. Mol. Sci. 2 (1982)79.Google Scholar
  129. [129]
    R.A. Yetter, F.L. Dryer and H. Rabitz, Chem. Phys. Proc. Combust., Paper 35 (1985).Google Scholar
  130. [130]
    W.C. Gardiner, Jr., J. Phys. Chem. 81 (1977)2367.Google Scholar
  131. [131]
    W.C. Gardiner, Jr., J. Phys. Chem. 83 (1979)37.Google Scholar
  132. [132]
    W.D. Chang, S.B. Karra and S.M. Senkan, Combust. Flame 69 (1987)113Google Scholar
  133. [133]
    D.G. Cacuci, J. Math. Phys. 22 (1981)2794.Google Scholar
  134. [134]
    D.G. Cacuci, J. Math. Phys. 22 (1981)2803.Google Scholar
  135. [135]
    A.M. Dunker, Atm. Environ. 14 (1980)671.Google Scholar
  136. [136]
    M. Demiralp and H. Rabitz, J. Chem. Phys. 74 (1981)3362.Google Scholar
  137. [137]
    D.K. Dacol and H. Rabitz, J. Chem. Phys. 78 (1983)4905.Google Scholar
  138. [138]
    M. Demiralp and H. Rabitz, J. Chem. Phys. 75 (1981)1810.Google Scholar
  139. [139]
    R. Larter, H. Rabitz and M. Kobayashi, J. Chem. Phys. 79 (1983)692.Google Scholar
  140. [140]
    M. Koda, Atm. Environ. 16 (1982)2595.Google Scholar
  141. [141]
    H. Rabitz, in:Lecture Notes in Mathematics 1086: Sensitivity of functionals with applications to engineering sciences, ed. V. Komkov (Springer, 1984), p. 77.Google Scholar
  142. [142]
    S.-Y. Cho, G.R. Carmichael and H. Rabitz, Atm. Environ. 21 (1987)2589.Google Scholar
  143. [143]
    C.L. Irwin and V. Komkov, J. Opt. Theor. Appl. 44 (1984)569.Google Scholar
  144. [144]
    D.K. Dacol and H. Rabitz, J. Math. Phys. 25 (1984)2716.Google Scholar
  145. [145]
    L. Eno, J.G.B. Beumeé, and H. Rabitz, Appl. Math. Comp. 16 (1985)153.Google Scholar
  146. [146]
    R. Larter, Stud. Phys. Theor. Chem. 28 (1984)371.Google Scholar
  147. [147]
    R. Larter, in:Chemical Instabilities, ed. G. Nicolis and F. Baras (Reidel, Dordrecht, 1984), p. 59.Google Scholar
  148. [148]
    M.A. Kramer, J.M. Calo, H. Rabitz and R.J. Kee, Report SAND82-8231, Sandia National Laboratories (1982).Google Scholar
  149. [149]
    R.J. Kee, J.A. Miller and T.H. Jefferson, Report SAND80-8003, Sandia National Laboratories (1980).Google Scholar
  150. [150]
    M.A. Kramer, R.J. Kee and H. Rabitz, Report SAND82-8230, Sandia National Laboratories (1982).Google Scholar
  151. [151]
    A.E. Lutz, R.J. Kee and J.A. Miller, Report SAND87-8248, Sandia National Laboratories (1988).Google Scholar
  152. [152]
    T. Turányi, Comput. Chem., in press.Google Scholar
  153. [153]
    D.M. Butler, Geophys. Res. Lett. 5 (1978)769.Google Scholar
  154. [154]
    P. Valkó and S. Vajda,Advanced Scientific Computing in BASIC (Elsevier, Amsterdam, 1989).Google Scholar
  155. [155]
    A.R. Marsden, Jr., M. Frenklach and D.D. Reible, JAPCA 37 (1987)370.Google Scholar
  156. [156]
    J.A. Miller, M.C. Branch, W.J. McLean, D.W. Chandler, M.D. Smooke and R.J. Kee,20th Symp. (Int.) on Combustion (1984), p. 673.Google Scholar
  157. [157]
    G. Li and H. Rabitz, Chem. Eng. Sci. 44 (1989)1413.Google Scholar
  158. [158]
    G. Li and H. Rabitz, Chem. Eng. Sci. 45 (1990)977.Google Scholar
  159. [159]
    J.M. Simmle, W.C. Gardiner, Jr. and C.S. Eubank, J. Phys. Chem. 86 (1982)799.Google Scholar
  160. [160]
    J.M. Roscoe and M.J. Thompson, Int. J. Chem. Kinet. 17 (1985)967.Google Scholar
  161. [161]
    N. Peters and W. Hocks, in:Gasdynamit and Chemical Lasers, ed. M. Fiebig and H. Hilgel (DFVLRPress, Köln-Porz, 1977).Google Scholar
  162. [162]
    R.A. Yetter, F.L. Dryer and H. Rabitz, Combust. Sci. Tech., submitted.Google Scholar
  163. [163]
    I. Börger, J. Lachmann, H.-J. Spangenberg and W. Fiebig, Z. phys. Chem. (Leipzig) 270 (1989)458.Google Scholar
  164. [164]
    T. Turányi, and T. Bérces, React. Kinet. Catal. Lett. 41 (1990)103.Google Scholar
  165. [165]
    G.R. Taylor, J. Atm. Sci. 46 (1989)1991.Google Scholar
  166. [166]
    T. Turányi, React. Kinet. Catal. Lett., in press.Google Scholar
  167. [167]
    H. Tylli, C. Olkkonen and I. Forsskåhl, J. Photochem. Photobiol. A: Chem. 49 (1989)397.Google Scholar
  168. [168]
    T. Turányi, L. Györgyi and R.J. Field, J. Phys. Chem., to be published.Google Scholar
  169. [169]
    C.E. Wulfman and H. Rabitz, J. Math. Chem. 3 (1989)243.Google Scholar
  170. [170]
    C.E. Wulfman and H. Rabitz, J. Math. Chem. 3 (1989)261.Google Scholar
  171. [171]
    V.I. Vedeneev, M.Ya. Goldenberg, N.I. Gorban and M.A. Teytalboym, Kinet. Katal. 29 (1988)14.Google Scholar
  172. [172]
    V.I. Vedeneev, M.Ya. Goldenberg, N.I. Gorban and M.A. Teytelboym, Kinet. Katal. 29 (1988)1291.Google Scholar
  173. [173]
    V.I. Vedeneev, M.Ya. Goldenberg, N.I. Gorban, A.A. Karnauk and M.A. Teytelboym, Kinet. Katal. 29 (1988)1297.Google Scholar
  174. [174]
    G. Li and H. Rabitz, Chem. Eng. Sci., in press.Google Scholar
  175. [175]
    G. Li and H. Rabitz, Chem. Eng. Sci., submitted.Google Scholar

Copyright information

© J.C. Baltzer AG, Scientific Publishing Company 1990

Authors and Affiliations

  • Tamás Turányi
    • 1
  1. 1.Central Research Institute for Chemistry of the Hungarian Academy of ScienceBudapestHungary

Personalised recommendations