Journal of Materials Science

, Volume 27, Issue 17, pp 4678–4684 | Cite as

Non-linear properties of polymer cellular materials with a negative Poisson's ratio

  • J. B. Choi
  • R. S. Lakes


Negative Poisson's ratio polymeric cellular solids (re-entrant foams) were studied to ascertain the optimal processing procedures which give rise to the smallest value of Poisson's ratio. The non-linear stress-strain relationship was determined for both conventional and re-entrant foams; it depended upon the permanent volumetric compression achieved during the processing procedure. Poisson's ratio of re-entrant foam measured as a function of strain was found to have a relative minimum at small strains. The toughness of re-entrant foam increased with permanent volumetric compression, and hence with density.


Polymer Foam Optimal Processing Small Strain Processing Procedure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. J. Gibson andM. F. Ashby, “Cellular Solids” (Pergamon, Oxford, 1988) pp. 120–168.Google Scholar
  2. 2.
    S. P. Timoshenko, “History of Strength of Materials” (Dover, New York, 1983) pp. 216–217, 248–249.Google Scholar
  3. 3.
    A. E. H. Love, “A Treatise on the Mathematical Theory of Elasticity” (Dover, New York, 1944) p. 13.Google Scholar
  4. 4.
    O. G. Ingles, I. K. Lee andR. C. Neil,Rock Mechan. 5 (1973) 203.Google Scholar
  5. 5.
    R. S. Lakes,Science 235 (1987) 1038.Google Scholar
  6. 6.
    K. E. Evans,J. Phys. D: Appl. Phys. 22 (1989) 1870.Google Scholar
  7. 7.
    B. D. Caddock andK. E. Evans,ibid. 22 (1989) 1877.Google Scholar
  8. 8.
    K. E. Evans andB. Caddock,ibid. 22 (1989) 1883.Google Scholar
  9. 9.
    S. P. Timoshenko andJ. N. Goodier, “Theory of Elasticity” (McGraw-Hill, New York, 1982) p. 398.Google Scholar
  10. 10.
    R. E. Peterson, “Stress Concentration Factors” (Wiley, New York, 1974) p. 137.Google Scholar
  11. 11.
    E. A. Friis, R. S. Lakes andJ. B. Park,J. Mater. Sci. 23 (1988) 4406.Google Scholar
  12. 12.
    “Annual Book of ASTM Standards”, E 8M-85 (1986).Google Scholar
  13. 13.
    Idem., E 9-81 (1986).Google Scholar
  14. 14.
    M. F. Beatty andD. O. Stalnaker,J. Appl. Mech. 53 (1986) 807.Google Scholar
  15. 15.
    S. K. Maiti, L. J. Gibson andM. F. Ashby,Acta Metall. 32 (1984) 1963.Google Scholar
  16. 16.
    K. C. Rusch,J. Appl. Polym. Sci. 13 (1969) 2297.Google Scholar
  17. 17.
    E. Q. Clutton andG. N. Rice, in Proceedings of 20th International Conference on Cell. Polym., London, 20–22 March 1991 (Rubra Technology).Google Scholar
  18. 18.
    F. A. Shutov,Adv. Polym. Sci. 51 (1983) 155.Google Scholar
  19. 19.
    E. A. Blair, “Resinography of Cellular Plastics”, ASTM Special Publication No. 414 (1967) p. 84.Google Scholar
  20. 20.
    J. W. Hartings andJ. H. Hagan,J. Cell. Plast. 14 (1978) 81.Google Scholar
  21. 21.
    J. B. Choi andR. S. Lakes,J. Cell. Polym. in press.Google Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • J. B. Choi
    • 1
    • 2
  • R. S. Lakes
    • 1
  1. 1.Department of Mechanical EngineeringUniversity of IowaIowa CityUSA
  2. 2.Department of Biomedical Engineering, and Center for Laser Science and EngineeringUniversity of IowaIowa CityUSA

Personalised recommendations