manuscripta mathematica

, Volume 64, Issue 3, pp 291–357 | Cite as

The triply periodic minimal surfaces of Alan Schoen and their constant mean curvature companions

  • Hermann Karcher


We prove existence of Schoen's and other triply periodic minimal surfaces via conjugate (polygonal) Plateau problems. The simpler of these minimal surfaces can be deformed into constant mean curvature surfaces by solving analogous Plateau problems in S3. The required contours in S3 are obtained by working with the great circle orbits of Hopf S1-actions in the same way as with families of parallel lines in ℝ3. Annular Plateau problems give new embedded minimal surfaces in S3. For many of the minimal surfaces in ℝ3 global Weierstraß representations are derived.


Number Theory Minimal Surface Algebraic Geometry Curvature Surface Parallel Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [S]
    Schoen, A.H.: Infinite periodic minimal surfaces without selfintersections. NASA Technical Note No. TN D-5541 (1970)Google Scholar
  2. [A]
    Anderson, D.: Studies in the Microstructure of Microemulsions. PhD thesis, University of Minnesota, June 1986Google Scholar
  3. [AHLL]
    Andersson, S., Hyde, S.T., Larsson, K., Lidin, S.: Minimal Surfaces and Structures: From Inorganic and Metal Crystals to Cell Membranes and Biopolymers. Chemical Reviews88, 221–242 (1988)Google Scholar
  4. [FK]
    Fischer, W., Koch, E.: On 3-periodic minimal surfaces. Zeitschrift für Kristallographie179, 31–52 (1987) and Galleys 1988Google Scholar
  5. [H]
    Hyde, S.: Infinite periodic minimal surfaces and crystal structures. PhD thesis, Dept. of Physics, Monash University, March 1986Google Scholar
  6. [D]
    Darboux, G.: Théorie Générale des Surface I. Gauthier-Villars, Paris 1887Google Scholar
  7. [KPS]
    Karcher, H., Pinkall, U., Sterling, I.: New Minimal Surfaces in S3. Preprint 86-27 Max-Planck-Institut f. Mathematik, Bonn. Submitted JDG 1986Google Scholar
  8. [L]
    Lawson, B.H.: Complete Minimal Surfaces in S3. Annals of Math.92, 335–374 (1970)Google Scholar
  9. [N]
    Nitsche, J.C.C.: Über ein verallgemeinertes Dirichletsches Problem für die Minimalflächengleichung und hebbare Unstetigkeiten ihrer Lösungen. Math. Ann.158, 203–214 (1965)Google Scholar
  10. [Ne]
    Neovius, E.R.: Bestimmung Zweier Specieller Periodischer Minimalflächen. Helsingfors 1883Google Scholar
  11. [NS]
    Nagano, T., Smyth, B.: Periodic Minimal Surfaces and Weyl Groups. Acta Math.145, 1–27 (1980)Google Scholar
  12. [O]
    Osserman, R.: Global Properties of Minimal Surfaces in E3 and En. Ann. of Math.80, 340–364 (1964)Google Scholar
  13. [Sc]
    Schwarz, H.A.: Gesammelte Mathematische Abhandlungen. Springer, Berlin 1890Google Scholar
  14. [Sm]
    Smyth, B.: Stationary minimal surfaces with boundary on a simplex. Invent. Math.76, 411–420 (1984)Google Scholar
  15. [W]
    Wohlgemuth, M.: Abelsche Minimalflächen. Diplomarbeit, Bonn 1988Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Hermann Karcher
    • 1
  1. 1.Mathematisches Institut der Universität BonnBonn 1

Personalised recommendations