manuscripta mathematica

, Volume 34, Issue 2–3, pp 135–155

Über projektive Moduln und Endlichkeitshindernisse bei Transformationsgruppen

  • Tammo tom Dieck


We study projective modules in the category of functors from homogeneous spaces into abelian groups. Such functors have been considered by Bredon [1]. We show that protective functors are determined by a set of ordinary projective modules over suitable group rings. The general notions are applied to give a quick proof for the product formula of the finiteness obstruction for transformation groups. These finiteness obstructions are straightforward extensions of the Swan-Wall obstructions (see e. g. Quinn [7]). They are important in the study of homotopy representations (tom Dieck — Petrie [3], [4]). This work is also related to Rothenberg [8].


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bredon, G. E.: Equivariant Cohomology Theories. Lecture Notes in Math. 34. Berlin-Heidelberg-New York: Springer 1967Google Scholar
  2. [2]
    tom Dieck, T.: Transformation Groups and Representation Theory. Lecture Notes in Math. 766. Berlin-Heidelberg-New York: Springer 1979Google Scholar
  3. [3]
    tom Dieck, T., and T. Petrie: The Homotopy Structure of Finite Group Actions on Spheres. In: Algebraic Topology Waterloo 1978, p. 222–243. Lecture Notes in Math. 741. Berlin-Heidelber-New York: Springer 1979Google Scholar
  4. [4]
    tom Dieck, T., and T. Petrie: Homotopy Representations of Finite Groups. In preparationGoogle Scholar
  5. [5]
    Hauschild, H.: Äquivariante Whiteheadtorsion. Manuscripta math.26, 63–82 (1978)Google Scholar
  6. [6]
    James, I. M., and G. B. Segal: On Equivariant Homotopy Type. Topology17, 267–272 (1976)Google Scholar
  7. [7]
    Quinn, I.: Finite Nilpotent Group Actions on Finite Complexes. In: Geometric Applications to Homotopy Theory I. Lecture Notes in Math. 657. Berlin-Heidelberg-New York: Springer 1968Google Scholar
  8. [8]
    Rothenberg, M.: Torsion Invariants and Finite Transformation Groups. In: Algebraic and Geometric Topology. AMS Proc. of Symp. in Pure Math. 32 Part 1, 267–311 (1978)Google Scholar
  9. [9]
    Swan, R. G.: Induced Representations and Projective Modules. Ann. of Math.71, 552–578 (1960)Google Scholar
  10. [10]
    Swan, R. G.: Periodic Resolutions for Finite Groups. Ann of Math.72, 267–291 (1960)Google Scholar
  11. [11]
    Wall, C. T. C.: Finiteness Conditions for CW-Complexes. Ann of Math,81, 56–69 (1965)Google Scholar
  12. [12]
    Wall C. T. C.: Finiteness Conditions for CW-Complexes II. Proc. Roy. Soc. Ser. A295, 129–139 (1966)Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Tammo tom Dieck
    • 1
  1. 1.Mathematisches InstitutBunsenstraΣe 3-5Göttingen Bunderepublik Deutschland

Personalised recommendations