Advertisement

Journal of Mathematical Chemistry

, Volume 20, Issue 1, pp 1–45 | Cite as

Landscapes and their correlation functions

  • Peter F. Stadler
Article

Abstract

Fitness landscapes are an important concept in molecular evolution. Many important examples of landscapes in physics and combinatorial optimization, which are widely used as model landscapes in simulations of molecular evolution and adaptation, are “elementary”, i.e., they are (up to an additive constant) eigenfunctions of a graph Laplacian. It is shown that elementary landscapes are characterized by their correlation functions. The correlation functions are in turn uniquely determined by the geometry of the underlying configuration space and the nearest neighbor correlation of the elementary landscape. Two types of correlation functions are investigated here: the correlation of a time series sampled along a random walk on the landscape and the correlation function with respect to a partition of the set of all vertex pairs.

Keywords

Physical Chemistry Time Series Correlation Function Random Walk Combinatorial Optimization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Wright, The roles of mutation, inbreeding, crossbreeding and selection in evolution, ed. D.F. Jones,Proc. 6th Int. Congress on Genetics, Vol. 1(1932) pp. 356–366.Google Scholar
  2. [2]
    K. Binder and A.P. Young, Rev. Mod. Phys. 58 (1986) 801.Google Scholar
  3. [3]
    M. Mézard, G. Parisi and M. Virasoro,Spin Glass Theory and Beyond (World Scientific, Singapore, 1987).Google Scholar
  4. [4]
    M. Garey and D. Johnson, it Computers and Intractability. A Guide to the Theory ofNP Completeness (Freeman, San Francisco, 1979).Google Scholar
  5. [5]
    M. Eigen, Die Naturwissensch.10 (1971) 465.Google Scholar
  6. [6]
    W. Fontana and P. Schuster, Biophys. Chem. 26 (1987) 123.Google Scholar
  7. [7]
    W. Fontana, W. Schnabl and P. Schuster, Phys. Rev. A40 (1989) 3301.Google Scholar
  8. [8]
    M. Eigen, J. McCaskill and P. Schuster, Adv. Chem. Phys. 75 (1989) 149.Google Scholar
  9. [9]
    M.A. Huynen, P.F. Stadler and W. Fontana, Proc. Natl. Acad. Sci. (USA) 93 (1996) 397.Google Scholar
  10. [10]
    E.L. Lawler, J.K. Lenstra, A.H.G.R. Kan and D.B. Shmoys,The Traveling Salesman Problem. A Guided Tour of Combinatorial Optimization (Wiley, 1985).Google Scholar
  11. [11]
    Y. Fu and P.W. Anderson, J. Phys. A: Math. Gen. 19 (1986) 1605.Google Scholar
  12. [12]
    P.F. Stadler and W. Schnabl, Phys. Lett A161 (1992) 337.Google Scholar
  13. [13]
    P.F. Stadler and R. Happel, J. Phys. A: Math. Gen. 25 (1992) 3103.Google Scholar
  14. [14]
    P.F. Stadler, Europhys. Lett. 20 (1992) 479.Google Scholar
  15. [15]
    W. Fontana, T. Griesmacher, W. Schnabl, P. Stadler and P. Schuster, Monatsh. Chemie 122 (1991) 795.Google Scholar
  16. [16]
    S. Bonhoeffer, J. McCaskill, P. Stadler and P. Schuster, Europ. Biophys. J. 22 (1993).Google Scholar
  17. [17]
    W. Fontana, P.F. Stadler, E.G. Bornberg-Bauer, T. Griesmacher, I.L. Hofacker, M. Tacker, P. Tarazona, E.D. Weinberger and P. Schuster, Phys. Rev. E47 (1993) 2083.Google Scholar
  18. [18]
    W. Fontana, D.A.M. Konings, P.F. Stadler and P. Schuster, Biochemistry 33 (1993) 1389.Google Scholar
  19. [19]
    I.L. Hofacker, W. Fontana, P.F. Stadler, S. Bonhoeffer, M. Tacker and P. Schuster, Monatsh. Chemie 125 (1994) 167.Google Scholar
  20. [20]
    M. Huynen and P. Hogeweg, J. Mol. Evol. 39 (1994) 71.Google Scholar
  21. [21]
    P. Schuster, Complex optimization in an artificial RNA world, in:Artificial Life II, Vol. XII of SFI Studies in the Science of Complexity, eds. D. Farmer, C. Langton, S. Rasmussen and C. Taylor (Addison-Wesley, 1992) pp. 277–291.Google Scholar
  22. [22]
    P. Schuster, W. Fontana, P.F. Stadler and I.L. Hofacker, Proc. Roy. Soc. Lond. B255 (1994) 279.Google Scholar
  23. [23]
    P. Schuster and P.F. Stadler, Comp. Chem. 18 (1994) 295.Google Scholar
  24. [24]
    P.F. Stadler and W. Grüner, J. Theor. Biol. 165 (1993) 373.Google Scholar
  25. [25]
    M. Tacker, W. Fontana, P. Stadler and P. Schuster, Euro. J. Biophys. 23 (1994) 29.Google Scholar
  26. [26]
    M. Tacker, P.F. Stadler, E.G. Bornberg-Bauer, I.L. Hofacker and P. Schuster, Algorithm independent properties of RNA secondary structure prediction, Euro. Biophys. J., in press; Santa Fe Institut Preprint 96-04-014.Google Scholar
  27. [27]
    C. Macken, P. Hagan and A. Perelson, SIAM J. Appl. Math. 51 (1991) 799.Google Scholar
  28. [28]
    H. Flyvbjerg and B. Lautrup, Phys. Rev. A46 (1992) 6714.Google Scholar
  29. [29]
    P. Bak, H. Flyvbjerg and B. Lautrup, Phys. Rev. A46 (1992) 6724.Google Scholar
  30. [30]
    S.A. Kauffman and S. Levin, J. Theor. Biol. 128 (1987) 11.Google Scholar
  31. [31]
    S.A. Kauffman and E.D. Weinberger, J. Theor. Biol. 141 (1989) 211.Google Scholar
  32. [32]
    E.D. Weinberger, Phys. Rev. A44 (1991) 6399.Google Scholar
  33. [33]
    B. Derrida, Phys. Rev. Lett. 45 (1980) 79.Google Scholar
  34. [34]
    B. Derriada, Phys. Rev. B24 (1981) 2613.Google Scholar
  35. [35]
    C. Amitrano, L. Peliti and M. Saber, J. Mol. Evol. 29 (1989) 513.Google Scholar
  36. [36]
    E.D. Weinberger and P.F. Stadler, J. Theor. Biol. 163 (1993) 255.Google Scholar
  37. [37]
    A. Bray and M. Moore, J. Phys. C: Solid St. Phys. 13 (1980) L469.Google Scholar
  38. [38]
    A. Bray and M. Moore, J. Phys. C: Solid St. Phys. 14 (1981) 1313.Google Scholar
  39. [39]
    C. De Dominics, M. Gabay, T. Garel and H. Orland, J. Physique 41 (1980) 923.Google Scholar
  40. [40]
    F. Tanaka and S. Edwards, J. Phys. F: Metal Phys. 10 (1980) 2769.Google Scholar
  41. [41]
    B. Derrida and E. Gardner, J. Physique 47 (1986) 959.Google Scholar
  42. [42]
    M. Zuker and D. Sankoff, Bull. Math. Biol 46 (1984) 591.Google Scholar
  43. [43]
    M. Eigen and P. Schuster,The Hypercycle (Springer, New York, Berlin, 1979).Google Scholar
  44. [44]
    J. Maynard-Smith, Nature 225 (1970) 563.Google Scholar
  45. [45]
    P.G. Mezey,Potential Energy Hypersurfaces (Elsevier, Amsterdam, 1987).Google Scholar
  46. [46]
    D. Heidrich, W. Kliesch and W. Quapp,Properties of Chemically Interesting Potential Energy Surfaces, Vol. 56 of Lecture Notes in Chemistry (Springer, Berlin, 1991).Google Scholar
  47. [47]
    T. Creighton,Proteins. Structure and Molecular Properties (Freeman, New York, 1992).Google Scholar
  48. [48]
    K.A. Dill, S. Bromberg, K. Yue, K.M. Fiebig, D.P. Yee, P.D. Thomas and H.S. Chan, Prot. Sci. 4 (1995) 562.Google Scholar
  49. [49]
    J. Bryngelson, J.N. Onuchic, N.D. Socci and P. Wolynes, Proteins 21 (1995) 167.Google Scholar
  50. [50]
    D. Heidrich,The Reaction Path in Chemistry: Current Approaches and Perspectives (Kluwer, Dordrecht, 1995).Google Scholar
  51. [51]
    P.F. Stadler and R. Happel, Random field models for fitness landscapes, J. Math. Biol., in press; Santa Fe Institute Preprint 95-07-069.Google Scholar
  52. [52]
    E.D. Weinberger, Biol. Cybern. 63 (1990) 325.Google Scholar
  53. [53]
    F. Spitzer,Principles ofRandom Walks (Springer, New York, 1976).Google Scholar
  54. [54]
    N.L. Biggs,Algebraic Graph Theory (Cambridge University Press, Cambridge UK, 2nd Ed. 1994).Google Scholar
  55. [55]
    D. Cvetković, M. Doob and H. Sachs,Spectra of Graphs - Theory and Applications (Academic Press, New York, 1980).Google Scholar
  56. [56]
    G. Kirchhoff, Über die Auflösung der Gleichungen, auf welche man bei der Untersuchung der lineare Verteilung galvanischer Ströme geführt wird, Ann. Phys. Chem. 72 (1847) 487–508.Google Scholar
  57. [57]
    P.M. Soardi,Potential Theory on Infinite Networks, Vol. 1590 of Lecture Notes in Mathematics (Springer, Berlin, 1994).Google Scholar
  58. [58]
    L. Grover, Oper. Res. Lett. 12 (1992) 235.Google Scholar
  59. [59]
    S. Baskaran, P.F. Stadler and P. Schuster, J. Theor. Biol. (1996) in press; Santa Fe Institute Preprint 95-10-083.Google Scholar
  60. [60]
    P.F. Stadler and B. Krakhofer, Local minima of p-spin models, Rev. Mex. Fis. 42 (1996) 355.Google Scholar
  61. [61]
    B. Huppert,Endliche Gruppen I (Springer, Berlin, Heidelberg, 1967).Google Scholar
  62. [62]
    J.-P. Serre,Linear Representations of Finite Groups (Springer, New York, Heidelberg, Berlin, 1977).Google Scholar
  63. [63]
    L. Lovász, Periodica Math. Hung. 6 (1975) 191.Google Scholar
  64. [64]
    D. Cvetkovié, M. Doob and H. Sachs,Spectra of Graphs - Theory and Applications (Academic Press, New York, 1980).Google Scholar
  65. [65]
    D. Sherrington and S. Kirkpatrick, Phys. Rev. Lett. 35 (1975) 1792.Google Scholar
  66. [66]
    B. Derrida, Phys. Rep. 67 (1980) 29.Google Scholar
  67. [67]
    E. Gardner and B. Derrida, J. Phys. A22 (1989) 1975.Google Scholar
  68. [68]
    M. Golay, IEEE Trans. Inform. Th. IT-23 (1977) 43.Google Scholar
  69. [69]
    J. Bernasconi, J. Physique 48 (1987) 559.Google Scholar
  70. [70]
    D. Rumschitzky, J. Math. Biol. 24 (1987) 667.Google Scholar
  71. [71]
    A. Dress and D. Rumschitzki, Acta Appl. Math. 1l (1988) 103.Google Scholar
  72. [72]
    S. Lin and B. Kernighan, Oper. Res. 21 (1965) 498.Google Scholar
  73. [73]
    J. Warren, Appl. Math. Comp. 60 (1994) 171.Google Scholar
  74. [74]
    B. Krakhofer, Local optima in landscapes of combinatorial optimization problems, Master's Thesis, University of Vienna, Dept. of Theoretical Chemistry (1995).Google Scholar
  75. [75]
    E. Aarts and J. Korst,Simulated Annealingand Boltzman Machines (Wiley, New York, 1990).Google Scholar
  76. [76]
    R. Otten and L. van Ginneken,The Annealing Algorithm (Kluwer, Boston, 1989).Google Scholar
  77. [77]
    D. Miller and J.F. Pekny, Science 251 (1991) 754.Google Scholar
  78. [78]
    B. Mohar, The laplacian spectrum of graphs, in:Graph Theory, Combinatorics, and Applications, eds. Y. Alavi, G. Chartrand, O. Ollermann and A. Schwenk (Wiley, New York, 1991) pp. 871–897.Google Scholar
  79. [79]
    B. Krakhofer and P.F. Stadler, Local optima in the landscape of the graph bipartitioning problem, Europhys. Lett. 34 (1996) 85.Google Scholar
  80. [80]
    C.A. Macken and P.F. Stadler, Evolution on fitness landscapes, in:1993 Lectures in Complex Systems, eds. L. Nadel and D.L. Stein, SFI Studies in the Science of Complexity, Vol VI (Addison-Wesley, Reading, MA, 1995).Google Scholar
  81. [81]
    I. Chavel,Eigenvalues in Riemannian Geometry (Academic Press, Orlando, FL, 1984).Google Scholar
  82. [82]
    Y. Colin De Verdiere, Rend. Mat. Appl. 13 (1993) 433.Google Scholar
  83. [83]
    M. Fiedler, Czech. Math. J. 23 (1973) 298.Google Scholar
  84. [84]
    R. Grone and G. Zimmermann, Lin. Multilin. Algebra 28 (1990) 45.Google Scholar
  85. [85]
    R. Merris, Lin. Multilin. Algebra 22 (1987) 115.Google Scholar
  86. [86]
    M. Fiedler, Czech. Math. J. 25 (1975) 619.Google Scholar
  87. [87]
    S. Kauffman,The Origin of Order (Oxford University Press, New York, Oxford, 1993).Google Scholar
  88. [88]
    F. Buckley and F. Harary,Distance in Graphs (Addison Wesley, Redwood City, CA, 1990).Google Scholar
  89. [89]
    D. Higman, Geometriae Dedicata 4 (1975) 1.Google Scholar
  90. [90]
    D. Higman, Geometriae Dedicata 5 (1976) 413.Google Scholar
  91. [91]
    D. Higman, Lin. Alg. Appl. 93 (1987) 209.Google Scholar
  92. [92]
    C.D. Godsil,Algebraic Combinatorics (Chapman & Hall, New York, 1993).Google Scholar
  93. [93]
    P. Cameron and J. van Lint,Designs, Graphs, Codes, and their Links, Vol. 22 of London Math. Soc. Student Texts (Cambridge University Press, Cambridge UK, 1991).Google Scholar
  94. [94]
    P. Delsarte, An Algebraic Approach to Association Schemes of Coding Theory, Vol. 10 of Phillips Research Reports Supplements (Phillips, 1973).Google Scholar
  95. [95]
    R. Bose and D. Mesner, Ann. Math. Statist. 30 (1959) 21.Google Scholar
  96. [96]
    P.F. Stadler and R. Happel, Canonical approximation of landscapes, Santa Fe Institute Preprint 94-09-51(1994).Google Scholar
  97. [97]
    A. Brouwer, A. Cohen and A. Neumaier,Distance-Regular Graphs (Springer, Berlin, New York, 1989).Google Scholar
  98. [98]
    N. Biggs,Finite Groups of Automorphisms, Vol. 6 of London Mathematical Society Lecture Notes (Cambridge University Press, Cambridge UK, 1971).Google Scholar
  99. [99]
    D. Higman, J. Algebra 6 (1967) 22.Google Scholar
  100. [100]
    G. Sabidussi, Mh. Math. 68 (1964) 426.Google Scholar
  101. [101]
    B. Bollobás,Graph Theory-An Introductory Course (Springer, New York, 1979).Google Scholar
  102. [102]
    A. Schwenk, Computing the characteristic polynomial of a graph, in:Graphs and Combinatorics, Vol. 406 of Lecture Notes in Mathematics, (Springer, Berlin, 1974) pp. 153–162.Google Scholar
  103. [103]
    D. Powers and M. Sulaiman, Lin. Algebra Appl. 48 (1982) 145.Google Scholar
  104. [104]
    D. Powers, SIAM J. Matrix Anal. Appl. 9 (1988) 399.Google Scholar
  105. [105]
    P.F. Stadler, J. Physique 4 (1994) 681.Google Scholar
  106. [106]
    P.F. Stadler, Disc. Math. 145 (1995) 229.Google Scholar
  107. [107]
    P.F. Stadler, Towards a theory of landscapes, in:Complex Systems and Binary Networks, eds. R. López Peña, R. Capovilla, R. Garcia-Pelayo, H. Waelbroeck and F. Zertuche, Vol. 461 of Lecture Notes in Physics (Springer, New York, 1995).Google Scholar
  108. [108]
    N. Sloane, An introduction to association schemes and coding theory, in:Theory and Applications of Special Functions, ed. R.A. Askey (Academic Press, New York, San Francisco, London, 1975) pp. 225–260.Google Scholar
  109. [109]
    S. Roman,Coding and Information Theory (Springer, New York, Heidelberg, 1992).Google Scholar
  110. [110]
    J. van Lint,Introduction to Coding Theory (Springer, New York, 1982).Google Scholar
  111. [111]
    R. Happel and P. F. Stadler, Canonical approximation of landscapes, Complexity (1996), in press.Google Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1996

Authors and Affiliations

  • Peter F. Stadler
    • 1
    • 2
  1. 1.Theoretische Biochemie, Institut für Theoretische ChemieUniversität WienViennaAustria
  2. 2.Santa Fe InstituteSanta FeUSA

Personalised recommendations