Landscapes and their correlation functions
- 331 Downloads
- 101 Citations
Abstract
Fitness landscapes are an important concept in molecular evolution. Many important examples of landscapes in physics and combinatorial optimization, which are widely used as model landscapes in simulations of molecular evolution and adaptation, are “elementary”, i.e., they are (up to an additive constant) eigenfunctions of a graph Laplacian. It is shown that elementary landscapes are characterized by their correlation functions. The correlation functions are in turn uniquely determined by the geometry of the underlying configuration space and the nearest neighbor correlation of the elementary landscape. Two types of correlation functions are investigated here: the correlation of a time series sampled along a random walk on the landscape and the correlation function with respect to a partition of the set of all vertex pairs.
Keywords
Physical Chemistry Time Series Correlation Function Random Walk Combinatorial OptimizationPreview
Unable to display preview. Download preview PDF.
References
- [1]S. Wright, The roles of mutation, inbreeding, crossbreeding and selection in evolution, ed. D.F. Jones,Proc. 6th Int. Congress on Genetics, Vol. 1(1932) pp. 356–366.Google Scholar
- [2]K. Binder and A.P. Young, Rev. Mod. Phys. 58 (1986) 801.Google Scholar
- [3]M. Mézard, G. Parisi and M. Virasoro,Spin Glass Theory and Beyond (World Scientific, Singapore, 1987).Google Scholar
- [4]M. Garey and D. Johnson, it Computers and Intractability. A Guide to the Theory ofNP Completeness (Freeman, San Francisco, 1979).Google Scholar
- [5]M. Eigen, Die Naturwissensch.10 (1971) 465.Google Scholar
- [6]W. Fontana and P. Schuster, Biophys. Chem. 26 (1987) 123.Google Scholar
- [7]W. Fontana, W. Schnabl and P. Schuster, Phys. Rev. A40 (1989) 3301.Google Scholar
- [8]M. Eigen, J. McCaskill and P. Schuster, Adv. Chem. Phys. 75 (1989) 149.Google Scholar
- [9]M.A. Huynen, P.F. Stadler and W. Fontana, Proc. Natl. Acad. Sci. (USA) 93 (1996) 397.Google Scholar
- [10]E.L. Lawler, J.K. Lenstra, A.H.G.R. Kan and D.B. Shmoys,The Traveling Salesman Problem. A Guided Tour of Combinatorial Optimization (Wiley, 1985).Google Scholar
- [11]Y. Fu and P.W. Anderson, J. Phys. A: Math. Gen. 19 (1986) 1605.Google Scholar
- [12]P.F. Stadler and W. Schnabl, Phys. Lett A161 (1992) 337.Google Scholar
- [13]P.F. Stadler and R. Happel, J. Phys. A: Math. Gen. 25 (1992) 3103.Google Scholar
- [14]P.F. Stadler, Europhys. Lett. 20 (1992) 479.Google Scholar
- [15]W. Fontana, T. Griesmacher, W. Schnabl, P. Stadler and P. Schuster, Monatsh. Chemie 122 (1991) 795.Google Scholar
- [16]S. Bonhoeffer, J. McCaskill, P. Stadler and P. Schuster, Europ. Biophys. J. 22 (1993).Google Scholar
- [17]W. Fontana, P.F. Stadler, E.G. Bornberg-Bauer, T. Griesmacher, I.L. Hofacker, M. Tacker, P. Tarazona, E.D. Weinberger and P. Schuster, Phys. Rev. E47 (1993) 2083.Google Scholar
- [18]W. Fontana, D.A.M. Konings, P.F. Stadler and P. Schuster, Biochemistry 33 (1993) 1389.Google Scholar
- [19]I.L. Hofacker, W. Fontana, P.F. Stadler, S. Bonhoeffer, M. Tacker and P. Schuster, Monatsh. Chemie 125 (1994) 167.Google Scholar
- [20]M. Huynen and P. Hogeweg, J. Mol. Evol. 39 (1994) 71.Google Scholar
- [21]P. Schuster, Complex optimization in an artificial RNA world, in:Artificial Life II, Vol. XII of SFI Studies in the Science of Complexity, eds. D. Farmer, C. Langton, S. Rasmussen and C. Taylor (Addison-Wesley, 1992) pp. 277–291.Google Scholar
- [22]P. Schuster, W. Fontana, P.F. Stadler and I.L. Hofacker, Proc. Roy. Soc. Lond. B255 (1994) 279.Google Scholar
- [23]P. Schuster and P.F. Stadler, Comp. Chem. 18 (1994) 295.Google Scholar
- [24]P.F. Stadler and W. Grüner, J. Theor. Biol. 165 (1993) 373.Google Scholar
- [25]M. Tacker, W. Fontana, P. Stadler and P. Schuster, Euro. J. Biophys. 23 (1994) 29.Google Scholar
- [26]M. Tacker, P.F. Stadler, E.G. Bornberg-Bauer, I.L. Hofacker and P. Schuster, Algorithm independent properties of RNA secondary structure prediction, Euro. Biophys. J., in press; Santa Fe Institut Preprint 96-04-014.Google Scholar
- [27]C. Macken, P. Hagan and A. Perelson, SIAM J. Appl. Math. 51 (1991) 799.Google Scholar
- [28]H. Flyvbjerg and B. Lautrup, Phys. Rev. A46 (1992) 6714.Google Scholar
- [29]P. Bak, H. Flyvbjerg and B. Lautrup, Phys. Rev. A46 (1992) 6724.Google Scholar
- [30]S.A. Kauffman and S. Levin, J. Theor. Biol. 128 (1987) 11.Google Scholar
- [31]S.A. Kauffman and E.D. Weinberger, J. Theor. Biol. 141 (1989) 211.Google Scholar
- [32]E.D. Weinberger, Phys. Rev. A44 (1991) 6399.Google Scholar
- [33]B. Derrida, Phys. Rev. Lett. 45 (1980) 79.Google Scholar
- [34]B. Derriada, Phys. Rev. B24 (1981) 2613.Google Scholar
- [35]C. Amitrano, L. Peliti and M. Saber, J. Mol. Evol. 29 (1989) 513.Google Scholar
- [36]E.D. Weinberger and P.F. Stadler, J. Theor. Biol. 163 (1993) 255.Google Scholar
- [37]A. Bray and M. Moore, J. Phys. C: Solid St. Phys. 13 (1980) L469.Google Scholar
- [38]A. Bray and M. Moore, J. Phys. C: Solid St. Phys. 14 (1981) 1313.Google Scholar
- [39]C. De Dominics, M. Gabay, T. Garel and H. Orland, J. Physique 41 (1980) 923.Google Scholar
- [40]F. Tanaka and S. Edwards, J. Phys. F: Metal Phys. 10 (1980) 2769.Google Scholar
- [41]B. Derrida and E. Gardner, J. Physique 47 (1986) 959.Google Scholar
- [42]M. Zuker and D. Sankoff, Bull. Math. Biol 46 (1984) 591.Google Scholar
- [43]M. Eigen and P. Schuster,The Hypercycle (Springer, New York, Berlin, 1979).Google Scholar
- [44]J. Maynard-Smith, Nature 225 (1970) 563.Google Scholar
- [45]P.G. Mezey,Potential Energy Hypersurfaces (Elsevier, Amsterdam, 1987).Google Scholar
- [46]D. Heidrich, W. Kliesch and W. Quapp,Properties of Chemically Interesting Potential Energy Surfaces, Vol. 56 of Lecture Notes in Chemistry (Springer, Berlin, 1991).Google Scholar
- [47]T. Creighton,Proteins. Structure and Molecular Properties (Freeman, New York, 1992).Google Scholar
- [48]K.A. Dill, S. Bromberg, K. Yue, K.M. Fiebig, D.P. Yee, P.D. Thomas and H.S. Chan, Prot. Sci. 4 (1995) 562.Google Scholar
- [49]J. Bryngelson, J.N. Onuchic, N.D. Socci and P. Wolynes, Proteins 21 (1995) 167.Google Scholar
- [50]D. Heidrich,The Reaction Path in Chemistry: Current Approaches and Perspectives (Kluwer, Dordrecht, 1995).Google Scholar
- [51]P.F. Stadler and R. Happel, Random field models for fitness landscapes, J. Math. Biol., in press; Santa Fe Institute Preprint 95-07-069.Google Scholar
- [52]E.D. Weinberger, Biol. Cybern. 63 (1990) 325.Google Scholar
- [53]F. Spitzer,Principles ofRandom Walks (Springer, New York, 1976).Google Scholar
- [54]N.L. Biggs,Algebraic Graph Theory (Cambridge University Press, Cambridge UK, 2nd Ed. 1994).Google Scholar
- [55]D. Cvetković, M. Doob and H. Sachs,Spectra of Graphs - Theory and Applications (Academic Press, New York, 1980).Google Scholar
- [56]G. Kirchhoff, Über die Auflösung der Gleichungen, auf welche man bei der Untersuchung der lineare Verteilung galvanischer Ströme geführt wird, Ann. Phys. Chem. 72 (1847) 487–508.Google Scholar
- [57]P.M. Soardi,Potential Theory on Infinite Networks, Vol. 1590 of Lecture Notes in Mathematics (Springer, Berlin, 1994).Google Scholar
- [58]L. Grover, Oper. Res. Lett. 12 (1992) 235.Google Scholar
- [59]S. Baskaran, P.F. Stadler and P. Schuster, J. Theor. Biol. (1996) in press; Santa Fe Institute Preprint 95-10-083.Google Scholar
- [60]P.F. Stadler and B. Krakhofer, Local minima of p-spin models, Rev. Mex. Fis. 42 (1996) 355.Google Scholar
- [61]B. Huppert,Endliche Gruppen I (Springer, Berlin, Heidelberg, 1967).Google Scholar
- [62]J.-P. Serre,Linear Representations of Finite Groups (Springer, New York, Heidelberg, Berlin, 1977).Google Scholar
- [63]L. Lovász, Periodica Math. Hung. 6 (1975) 191.Google Scholar
- [64]D. Cvetkovié, M. Doob and H. Sachs,Spectra of Graphs - Theory and Applications (Academic Press, New York, 1980).Google Scholar
- [65]D. Sherrington and S. Kirkpatrick, Phys. Rev. Lett. 35 (1975) 1792.Google Scholar
- [66]B. Derrida, Phys. Rep. 67 (1980) 29.Google Scholar
- [67]E. Gardner and B. Derrida, J. Phys. A22 (1989) 1975.Google Scholar
- [68]M. Golay, IEEE Trans. Inform. Th. IT-23 (1977) 43.Google Scholar
- [69]J. Bernasconi, J. Physique 48 (1987) 559.Google Scholar
- [70]D. Rumschitzky, J. Math. Biol. 24 (1987) 667.Google Scholar
- [71]A. Dress and D. Rumschitzki, Acta Appl. Math. 1l (1988) 103.Google Scholar
- [72]S. Lin and B. Kernighan, Oper. Res. 21 (1965) 498.Google Scholar
- [73]J. Warren, Appl. Math. Comp. 60 (1994) 171.Google Scholar
- [74]B. Krakhofer, Local optima in landscapes of combinatorial optimization problems, Master's Thesis, University of Vienna, Dept. of Theoretical Chemistry (1995).Google Scholar
- [75]E. Aarts and J. Korst,Simulated Annealingand Boltzman Machines (Wiley, New York, 1990).Google Scholar
- [76]R. Otten and L. van Ginneken,The Annealing Algorithm (Kluwer, Boston, 1989).Google Scholar
- [77]D. Miller and J.F. Pekny, Science 251 (1991) 754.Google Scholar
- [78]B. Mohar, The laplacian spectrum of graphs, in:Graph Theory, Combinatorics, and Applications, eds. Y. Alavi, G. Chartrand, O. Ollermann and A. Schwenk (Wiley, New York, 1991) pp. 871–897.Google Scholar
- [79]B. Krakhofer and P.F. Stadler, Local optima in the landscape of the graph bipartitioning problem, Europhys. Lett. 34 (1996) 85.Google Scholar
- [80]C.A. Macken and P.F. Stadler, Evolution on fitness landscapes, in:1993 Lectures in Complex Systems, eds. L. Nadel and D.L. Stein, SFI Studies in the Science of Complexity, Vol VI (Addison-Wesley, Reading, MA, 1995).Google Scholar
- [81]I. Chavel,Eigenvalues in Riemannian Geometry (Academic Press, Orlando, FL, 1984).Google Scholar
- [82]Y. Colin De Verdiere, Rend. Mat. Appl. 13 (1993) 433.Google Scholar
- [83]M. Fiedler, Czech. Math. J. 23 (1973) 298.Google Scholar
- [84]R. Grone and G. Zimmermann, Lin. Multilin. Algebra 28 (1990) 45.Google Scholar
- [85]R. Merris, Lin. Multilin. Algebra 22 (1987) 115.Google Scholar
- [86]M. Fiedler, Czech. Math. J. 25 (1975) 619.Google Scholar
- [87]S. Kauffman,The Origin of Order (Oxford University Press, New York, Oxford, 1993).Google Scholar
- [88]F. Buckley and F. Harary,Distance in Graphs (Addison Wesley, Redwood City, CA, 1990).Google Scholar
- [89]D. Higman, Geometriae Dedicata 4 (1975) 1.Google Scholar
- [90]D. Higman, Geometriae Dedicata 5 (1976) 413.Google Scholar
- [91]D. Higman, Lin. Alg. Appl. 93 (1987) 209.Google Scholar
- [92]C.D. Godsil,Algebraic Combinatorics (Chapman & Hall, New York, 1993).Google Scholar
- [93]P. Cameron and J. van Lint,Designs, Graphs, Codes, and their Links, Vol. 22 of London Math. Soc. Student Texts (Cambridge University Press, Cambridge UK, 1991).Google Scholar
- [94]P. Delsarte, An Algebraic Approach to Association Schemes of Coding Theory, Vol. 10 of Phillips Research Reports Supplements (Phillips, 1973).Google Scholar
- [95]R. Bose and D. Mesner, Ann. Math. Statist. 30 (1959) 21.Google Scholar
- [96]P.F. Stadler and R. Happel, Canonical approximation of landscapes, Santa Fe Institute Preprint 94-09-51(1994).Google Scholar
- [97]A. Brouwer, A. Cohen and A. Neumaier,Distance-Regular Graphs (Springer, Berlin, New York, 1989).Google Scholar
- [98]N. Biggs,Finite Groups of Automorphisms, Vol. 6 of London Mathematical Society Lecture Notes (Cambridge University Press, Cambridge UK, 1971).Google Scholar
- [99]D. Higman, J. Algebra 6 (1967) 22.Google Scholar
- [100]G. Sabidussi, Mh. Math. 68 (1964) 426.Google Scholar
- [101]B. Bollobás,Graph Theory-An Introductory Course (Springer, New York, 1979).Google Scholar
- [102]A. Schwenk, Computing the characteristic polynomial of a graph, in:Graphs and Combinatorics, Vol. 406 of Lecture Notes in Mathematics, (Springer, Berlin, 1974) pp. 153–162.Google Scholar
- [103]D. Powers and M. Sulaiman, Lin. Algebra Appl. 48 (1982) 145.Google Scholar
- [104]D. Powers, SIAM J. Matrix Anal. Appl. 9 (1988) 399.Google Scholar
- [105]P.F. Stadler, J. Physique 4 (1994) 681.Google Scholar
- [106]P.F. Stadler, Disc. Math. 145 (1995) 229.Google Scholar
- [107]P.F. Stadler, Towards a theory of landscapes, in:Complex Systems and Binary Networks, eds. R. López Peña, R. Capovilla, R. Garcia-Pelayo, H. Waelbroeck and F. Zertuche, Vol. 461 of Lecture Notes in Physics (Springer, New York, 1995).Google Scholar
- [108]N. Sloane, An introduction to association schemes and coding theory, in:Theory and Applications of Special Functions, ed. R.A. Askey (Academic Press, New York, San Francisco, London, 1975) pp. 225–260.Google Scholar
- [109]S. Roman,Coding and Information Theory (Springer, New York, Heidelberg, 1992).Google Scholar
- [110]J. van Lint,Introduction to Coding Theory (Springer, New York, 1982).Google Scholar
- [111]R. Happel and P. F. Stadler, Canonical approximation of landscapes, Complexity (1996), in press.Google Scholar