Journal of Mathematical Chemistry

, Volume 9, Issue 3, pp 207–238

Understanding the properties of isospectral points and pairs in graphs: The concept of orthogonal relation

  • Christoph Rücker
  • Gerta Rücker
Papers

Abstract

The mathematical property “orthogonal relationship” is used in proving the fact that isospectrality, isocodality and isocoefficiency of vertices within a graph are all equivalent. The same is true for isospectrality, “strict isocodality” and “strict isocoefficiency” of pairs (including edges) within a graph, whereas the “weak” versions of the latter properties are necessary but not sufficient for isospectrality of pairs. Similarly, necessary and sufficient conditions for isospectrality of vertices and pairs in different graphs are derived. In all these proofs, the concept of “orthogonal relation” plays a major role in that it allows the use of tools of elementary linear algebra.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    N. Trinajstić,Chemical Graph Theory (CRC Press, Boca Raton, FL, 1983).Google Scholar
  2. [2]
    M. Randić, M. Barysz, J. Nowakowski, S. Nikolić and N. Trinajstić, J. Mol. Struct. (THEOCHEM) 185 (1989)95.Google Scholar
  3. [3]
    M. Randić and A.F. Kleiner, Ann. N.Y. Acad. Sci. 555 (1989)320.Google Scholar
  4. [4]
    J.P. Lowe and M.W. Davis, J. Math. Chem. 5 (1990)275;see also M. Randić and B. Baker, J. Math. Chem. 2(1988)249.Google Scholar
  5. [5]
    J.P. Lowe and M.R. Soto, MATCH 20 (1986)21.Google Scholar
  6. [6]
    G. Rücker and Ch. Rilcker, J. Chem. Inf. Comput. Sci. 31 (1991)422.Google Scholar
  7. [7a]
    W.C. Hemdon and M.L. Ellzey, Jr., Tetrahedron 31 (1975)99;Google Scholar
  8. [7b]
    W.C. Herndon and M.L. Ellzey, Jr., MATCH 20 (1986)53.Google Scholar
  9. [8]
    M. Randić, J. Comput. Chem. 1 (1980)386.Google Scholar
  10. [9]
    N. Trinajstić, J. Math. Chem. 2 (1988)197.Google Scholar
  11. [10]
    T.P. Živković, J. Comput. Chem. 11 (1990)217.Google Scholar
  12. [11]
    S. Lang,Linear Algebra (Addison-Wesley, Reading, MA, 1970).Google Scholar
  13. [12]
    E. Heilbronner and T.B. Jones, J. Amer. Chem. Soc. 100 (1978)6506.Google Scholar
  14. [13]
    H. Hosoya, Theor. Chim. Acta 25 (1972)215.Google Scholar
  15. [14]
    H. Hosoya and M. Randić, Theor. Chim. Acta 63 (1983)473.Google Scholar
  16. [15]
    E. Heilbronner, Helv. Chim. Acta 36 (1953)170.Google Scholar
  17. [16]
    G.A. Baker, Jr., J. Math. Phys. 7 (1966)2238.Google Scholar
  18. [17]
    F.R. Gantmacher,The Theory of Matrices (Springer, New York, 1986).Google Scholar
  19. [18]
    C. Jochum and J. Gasteiger, J. Chem. Inf. Comput. Sci. 19 (1979)49.Google Scholar
  20. [19]
    A.T. Balaban, O. Mekenyan and D. Bonchev, J. Comput. Chem. 6 (1985)538.Google Scholar
  21. [20]
    W.C. Herndon, Tetrahedron Lett. (1974)671.Google Scholar
  22. [21]
    A.J. Schwenk, in:Lecture Notes in Mathematics, Vol. 406, ed. R.A. Bari and F. Harary (Springer, New York, 1974), p. 153.Google Scholar
  23. [22]
    M.E. Fisher, J. Comb. Theory 1 (1966)105.Google Scholar
  24. [23]
    M. Randić, W.L. Woodworth and A. Graovac, Int. J. Quant. Chem. 24 (1983)435.Google Scholar
  25. [24]
    M. Randić, SIAM J. Alg. Disc. Meth. 6 (1985)145.Google Scholar

Copyright information

© J.C. Baltzer AG, Scientific Publishing Company 1991

Authors and Affiliations

  • Christoph Rücker
    • 1
  • Gerta Rücker
    • 1
  1. 1.Institut für Organische Chemie und BiochemieUniversität FreiburgFreiburgGermany

Personalised recommendations