Advertisement

Journal of Mathematical Chemistry

, Volume 18, Issue 2, pp 247–308 | Cite as

Structure, dynamics and spectroscopy of single molecules: A challenge to quantum mechanics

  • Anton Amann
Article

Keywords

Spectroscopy Physical Chemistry Quantum Mechanic Single Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Y. Aharonov, J. Anandan and L. Vaidman, Phys. Rev. A47 (1993) 4616.Google Scholar
  2. [2]
    A. Amann, J. Math. Phys. 27 (1986) 2282.Google Scholar
  3. [3]
    A. Amann, Fortschr. Phys. 34 (1986) 167.Google Scholar
  4. [4]
    A. Amann, J. Math. Phys. 28 (1987) 2384.Google Scholar
  5. [5]
    A. Amann, Chirality as a classical observable in algebraic quantum mechanics, in:Fractals, Quasicrystals, Chaos, Knots and Algebraic Quantum Mechanics,eds. A. Amann, L. Cederbaum and W. Gans (Kluwer, Dordrecht, 1988) pp. 305–325.Google Scholar
  6. [6]
    A. Amann, J. Math. Chem. 6 (1991) l.Google Scholar
  7. [7]
    A. Amann, Ann. Phys. 208 (1991) 414.Google Scholar
  8. [8]
    A. Amann, Molecules coupled to their environment, in:Large-Scale Molecular Systems: Quantum and Stochastic Aspects — Beyond the Simple Molecular Picture, NATO ASI Series B258, eds. W. Gans, A. Blumen and A. Amann (Plenum, London, 1991) pp. 23–22.Google Scholar
  9. [9]
    A. Amann, Theories of molecular chirality: A short review, in:Large-Scale Molecular Systems: Quantum and Stochastic Aspects- Beyond the Simple Molecular Picture, NATO ASI Series B258, eds. W. Gans, A. Blumen and A. Amann (Plenum, London, 1991) pp. 23–32.Google Scholar
  10. [10]
    A. Amann, J. Chem. Phys. 96 (1992) 1317Google Scholar
  11. [11]
    A. Amann, South African J. Chem. 45 (1992) 29.Google Scholar
  12. [12]
    A. Amann, Synthese 97 (1993) 125.Google Scholar
  13. [13]
    A. Amann, Modelling the quantum mechanical measurement process, Int. J. Theor. Phys. 34 (1995) 1187.Google Scholar
  14. [14]
    A. Amann, The quantum-mechanical measurement process in the thermodynamic formalism,Symp. on the Foundations of Modern Physics 1993 — Quantum Measurement, Irreversibility, and the Physics of Information, eds. P. Busch, P. Lahti and P. Mittelstaedt (World Scientific, Singapur, 1994) pp. 3–19.Google Scholar
  15. [15]
    A. Amann, An individual interpretation of quantum mechanics, to appear inProc. Fourth Winter School on Measure Theory, Liptovsky Jan, Slovakia, 1995.Google Scholar
  16. [16]
    A. Amann, An individual interpretation of quantum mechanics and quantum theory of molecular shape, to appear inProc. Conf. on: Riflessioni Epistemologiche e Metodologiche sulla Chimica, Rome, 1994.Google Scholar
  17. [17]
    A. Amann and H. Primas, What is the referent of a nonpure quantum state?, to appear inExperimental Metaphysics—Quantum Mechanical Studies in Honor of Abner Shimony, eds. R.S. Cohen and J. Stachel.Google Scholar
  18. [18]
    W.P. Ambrose and W.E. Moerner, Nature 349 (1991) 225.Google Scholar
  19. [19]
    L. Arnold,Stochastic Differential Equations: Theory and Applications (Interscience, New York, 1974).Google Scholar
  20. [20]
    A. Aspect, J. Dalibard and G. Roger, Phys. Rev. Lett. 49 (1982) 91.Google Scholar
  21. [21]
    A. Aspect, G. Grangier and G. Roger, Phys. Rev. Lett. 49 (1982) 1804.Google Scholar
  22. [22]
    H. Atmanspacher, G. Wiedenmann and A. Amann, The endo-exodistinction and its relevance for the study of complex systems, Complexity l (1995) 15.Google Scholar
  23. [23]
    E. Beltrametti and S. Bugajski, A classical extension of quantum mechanics, to appear in J. p Phys. A (1995).Google Scholar
  24. [24]
    J.C. Bergquist, R.G. Hulet, W.M. Itano and D.J. Wineland, Phys. Rev. Lett. 57 (1986) 1699.Google Scholar
  25. [25]
    V. Bertolasi, P. Gilli, V. Ferretti and G. Gilli, J. Am. Chem. Soc. 113 (1991) 4917.Google Scholar
  26. [26]
    J.J. Binney, N.J. Dowrick, A.J. Fisher and M.E.J. Newman,The Theory of Critical Phenomena. An Introduction to the Renormalization Group (Clarendon Press, Oxford, 1992Google Scholar
  27. [27]
    [27]M. Bixon and J. Jortner, J. Chem. Phys. 48 (1968) 715.Google Scholar
  28. [28]
    P. Blanchard and A. Jadczyk, Event-enhanced quantum theory and piecewise deterministic dynamics, Preprint (1994).Google Scholar
  29. [29]
    P. Bóna, J. Math. Phys. 29 (1988) 2223.Google Scholar
  30. [30]
    P. Bóna, J. Math. Phys. 30 (1989) 2994.Google Scholar
  31. [31]
    E. Borel,Introduction Géométrique á Quelques Theories Physiques (Gauthier-Villars, Paris, 1914).Google Scholar
  32. [32]
    S. Bratan and F. Strohbusch, J. Mol. Struct. 61 (1980) 409.Google Scholar
  33. [33]
    O. Bratteli and D.W. Robinson,Operator Algebras and Quantum Statistical Mechanics, Vol. 2 (Springer, NewYork, 1981).Google Scholar
  34. [34]
    O. Bratteli and D.W. Robinson,Operator Algebra and Quantum Statistical Mechanics, Vol. 1 (Springer, 2nd revised Ed., New York, 1987).Google Scholar
  35. [35]
    T. Breuer, A. Amann and N. Landsman, J. Math. Phys. 34 (1993) 5441.Google Scholar
  36. [36]
    T. Breuer, A. Amann and N.P. Landsman, Disjoint final states in robust quantum measurements,Symp. on the Foundations of Modern Physics 1993 — Quantum Measurement, Irreversibility, and the Physics of Information, eds. P. Busch, P. Lahti and P. Mittelstaedt (World Scientific, Singapur, 1994) pp. 118–123.Google Scholar
  37. [37]
    L.J. Bunce and J. Hamhalter, Math. Z. 215 (1994) 491.Google Scholar
  38. [38]
    P. Busch, P.J. Lahti and P. Mittelstaedt,The Quantum Theory of Measurement (Springer, Berlin, 1991).Google Scholar
  39. [39]
    [39]S.M. Chumakov, K.-E., Hellwig and A.L. Rivera, Phys. Lett. A197 (1995) 73.Google Scholar
  40. [40]
    J.A. Cina and R.A. Harris, J. Chem. Phys. 100 (1994) 2531.Google Scholar
  41. [41]
    J.A. Cina and R.A. Harris, Science 267 (1995) 832.Google Scholar
  42. [42]
    H. Cramer, Sur un nouveau theoréme-limite de la Théorie des probabilités, in:Actualités Scientifiques et Industrielles, No. 736: Colloque Consacré á la Theorie des Probabilites (Hermann, Paris, 1937) pp. 5–23.Google Scholar
  43. [43]
    M. Croci H.-J. Müschenbom, F. Gi1ttler, A. Renn and U.P. Wild, Chem. Phys. Lett. 212 (1993) 71.Google Scholar
  44. [44]
    C. Dellacheri and P.A. Meyer,Probabilites et Potentiels B (Hermann, Paris, 1980).Google Scholar
  45. [45]
    J.-D. Deuschel and D.W. Stroock,Large Deviations (Academic Press, San Diego, 1989).Google Scholar
  46. [46]
    R.S. Ellis,Entropy, Large Deviations, and Statistical Mechanics (Springer, New York, 1985).Google Scholar
  47. [47]
    M. Emery,Stochastic Calculus in Manifolds (Springer, Berlin, 1989).Google Scholar
  48. [48]
    B. d. Espagnat, An elementary note about “mixtures”, in:Preludes in Theoretical Physics, eds. A. De-Shalit, H. Feshbach and L. v. Hove (North-Holland, Amsterdam, 1966).Google Scholar
  49. [49]
    M. Fannes, Temperature states of spin-boson models, in:Quantum Probability and Applications IV, Lecture Notes in Mathematics Vol. 1396, eds. L. Accardi and W. von Waldenfels (Springer, Berlin, 1989).Google Scholar
  50. [50]
    M. Fannes, B. Nachtergaele and A. Verbeure, Europhys. Lett. 4 (1987) 963.Google Scholar
  51. [51]
    M. Fannes, B. Nachtergaele and A. Verbeure, Commun. Math. Phys. 114 (1988) 537.Google Scholar
  52. [52]
    M. Fannes, B. Nachtergaele and A. Verbeure, J. Phys. A21 (1988) 1759.Google Scholar
  53. [53]
    E. Fermi,Notes on Quantum Mechanics (The University of Chicago Press, Chicago, 1961).Google Scholar
  54. [54]
    E. Fick and G. Sauermann,Quantenstatistik dynamischer Prozesse; Band IIa: Antwort- und Relaxationstheorie (Verlag Harri Deutsch, Thun, 1986).Google Scholar
  55. [55]
    J. Gea-Banacioche, Phys. Rev. Lett. 65 (1990) 3385.Google Scholar
  56. [56]
    J. Gea-Banacloche, Phys. Rev. A44 (1991) 5913.Google Scholar
  57. [57]
    G.C. Ghirardi, P. Pearle and T. Weber, Phys. Rev. A42 (1990) 78.Google Scholar
  58. [58]
    G.C. Ghirardi, A. Rimini and T. Weber, Phys. Rev. D34 (1986) 479.Google Scholar
  59. [59]
    N. Gisin, Phys. Rev. Lett. 52 (1984) 1657.Google Scholar
  60. [60]
    N. Gisin, Helv. Phys. Acta 62 (1989) 363.Google Scholar
  61. [61]
    M.L. Goldberger and K.M. Watson,Collision Theory (Wiley, New York, 1964).Google Scholar
  62. [62]
    F. Güttler, T. Irgnartinger, T. Plakhotnik, A. Renn and U.P. Wild, Chem. Phys. Lett. 217 (1994) 393.Google Scholar
  63. [63]
    F. Güttler, J. Sepiol, T. Plakhotnik, A. Mitterdorfer, A. Renn and U.P. Wild, J. Lumin. 56 (1993) 29.Google Scholar
  64. [64]
    J. Harnhalter, Ann. Inst. Henri Poincaré 58 (1993) 173.Google Scholar
  65. [65]
    G.S. Hammond, H. Gotthardt, L.M. Coyne, M. Axelrod, D.R. Rayner and K. Mislow, J. Am. Chem. Soc. 87 (1965) 4959.Google Scholar
  66. [66]
    S. Haroche, Cavity quantum electrodynamics, in:Fundamental Systems in Quantum Optics, Les Houches Session 53, eds. J. Dalibard, J.M. Raimond and J. Zinn-Justin (North-Holland, Amsterdam, 1992).Google Scholar
  67. [67]
    F.H. Herbstein, M. Kapon, G.M. Reisner, M.S. Lehman, R.B. Kress, R.B. Wilson, W.-I. Shiau, E.N. Duesler, I.C. Paul and D.Y. Curtin, Proc. R. Soc. Lond. A399 (1985) 295.Google Scholar
  68. [68]
    F. Hund, Z. Phys. 43 (1927) 805.Google Scholar
  69. [69]
    J.M. Jauch,Foundations of Quantum Mechanics (Addison-Wesley, Reading, Massachusetts, 1968).Google Scholar
  70. [70]
    [70]E.T. Jaynes, Phys. Rev. 106 (1957) 620.Google Scholar
  71. [71]
    R.E. Kalman, Math. Jap. 41 (1995) 41.Google Scholar
  72. [72]
    T. Kato,Perturbation Theory for Linear Operators (Springer, New York, 1966).Google Scholar
  73. [73]
    S. Kobayashi and K. Nomizu,Foundations of Differential Geometry, Vol. I (Wiley, New York, 1963).Google Scholar
  74. [74]
    R. Kubo, M. Toda and N. Hashitsume,Statistical Physics II (Springer, Berlin, 1985).Google Scholar
  75. [75]
    S.G. Kukolich, J.H.S. Wang and D.E. Oates, Chem. Phys. Lett. 20 (1973) 519.Google Scholar
  76. [76]
    O.E. Lanford, Entropy and equilibrium states in classical statistical mechanics, in:Statistical Mechanics and Mathematical Problems, ed. A. Lenard (Springer, Berlin, 1973) pp. 1–113.Google Scholar
  77. [77]
    B.B. Mandelbrot and C.J.G. Evertsz, Exactly self-similar left-sided multifractals, in:Fractals and Disordered Systems, eds. A. Bunde and S. Havlin (Springer, Berlin, 1991).Google Scholar
  78. [78]
    R. Meyer and R.R. Ernst, J. Chem. Phys. 86 (1987) 784.Google Scholar
  79. [79]
    K. Mislow, M. Axelrod, D.R. Rayner, H. Gotthardt, L.M. Coyne and G.S. Hammond, J. Am. Chem. Soc. 87 (1965) 4958.Google Scholar
  80. [80]
    B. Misra, On a new definition of quantal states, in:Physical Reality and Mathematical Description, eds. C.P. Enz and J. Mehra (Reidel, Dordrecht, 1974) pp. 455–476.Google Scholar
  81. [81]
    W.E. Moerner, Science 265 (1994) 46.Google Scholar
  82. [82]
    W. E. Moemer and T. Basché, Angew. Chem. Int. Ed. 32 (1993) 457.Google Scholar
  83. [83]
    W.E. Moerner, T. Plakhotnik, T. Irngartinger, M. Croci, V. Palm and U.P. Wild, J. Phys. Chem. 98 (1994) 7382.Google Scholar
  84. [84]
    W.E. Moerner, T. Plakhotnik, T. Irngartinger, U.P. Wild, D.W. Pohl and B. Hecht, Phys. Rev. Lett. 73 (1994) 2764.Google Scholar
  85. [85]
    U. Müller-Herold, Lett. Math. Phys. 8 (1984) 127.Google Scholar
  86. [86]
    W. Nagourney, J. Sandberg and H. Dehmelt, Phys. Rev. Lett. 56 (1986) 2797.Google Scholar
  87. [87]
    M. Ohya and D. Petz,Quantum Entropy and its Use (Springer, Berlin, 1993).Google Scholar
  88. [88]
    M. Orrit, J. Bernard and R.L. Personov, J. Phys. Chem. 97 (1993) 10256.Google Scholar
  89. [89]
    D. Papousek and V. Spirko, A new theoretical look at the inversion problem in molecules, in:Topics in Current Chemistry, Vol. 68 (Springer, Berlin, 1976) pp. 59–102.Google Scholar
  90. [90]
    S.O. Paul and C.J.H. Schulte, Mikrochimica Acta (Wien) 1 (1988) 171.Google Scholar
  91. [91]
    S.O. Paul and C.J.H. Schutte, Spectrochimica Acta A46 (1990) 323.Google Scholar
  92. [92]
    J. Peinke, J. Parisi, O.E. Rössler and R. Stoop,Encounter with Chaos. Self Organized Hierarchical Complexity in Semiconductor Experiments (Springer, Berlin, 1992).Google Scholar
  93. [93]
    A. Perelomov,Generalized Coherent States and Their Applications (Springer, Berlin, 1986).Google Scholar
  94. [94]
    D. Petz and C. Sudár, Geometries of quantum states, Preprint (1995).Google Scholar
  95. [95]
    P. Pfeifer, Chiral molecules — a superselection rule induced by the radiation field, Thesis ETHZürich No. 6551, ok Gotthard S + D AG, Zürich (1980).Google Scholar
  96. [96]
    C. Piron,Foundations of Quantum Physics (Benjamin, New York, 1976).Google Scholar
  97. [97]
    M. Pirotta, F. Gi1ttler, H.-R. Gygax, A. Renn, J. Sepiol and U.P. Wild, Chem. Phys. Lett. 208 (1993) 379.Google Scholar
  98. [98]
    T. Plakhotnik, W.E. Moerner, V. Palm and U.P. Wild, Opt. Comm. 114 (1995) 83.Google Scholar
  99. [99]
    H. Primas,Chemistry, Quantum Mechanics, and Reductionism. Perspectives in Theoretical Chemistry (Springer, Berlin, 1983).Google Scholar
  100. [100]
    H. Primas, Induced nonlinear time evolution of open quantum objects, in:Sixty-two Years of Uncertainty: Historical, Philosophical, and Physical Inquiries into the Foundations of Quantum Mechanics, ed. A. I. Miller (Plenum Press, New York, 1990) pp. 259–280.Google Scholar
  101. [101]
    H. Primas, The measurement process in the individual interpretation of quantum mechanics, in:Quantum Theory without Reduction, eds. M. Cini and J.-M. Levy-Leblond (IOP Publ., Bristol, 1990) pp. 49–68.Google Scholar
  102. [102]
    H. Primas, Necessary and sufficient conditions for an individual description of the measurement process,Symp. on the Foundations of Modern Physics 1990 — Quantum Theory of Measurement and Related Philosophical Problems, eds. P. Lahti and P. Mittelstaedt (World Scientific, Singapore, 1991) pp. 332–346.Google Scholar
  103. [103]
    H. Primas,Physikalische Chemie A, Course at the Swiss Federal Institute of Technology, Zürich (1994).Google Scholar
  104. [104]
    M. Quack, Chem. Phys. Lett. 132 (1986) 147.Google Scholar
  105. [105]
    M. Quack, Angew. Chem. Int. Ed. Engl. 28 (1989) 571.Google Scholar
  106. [106]
    M. Quack, Die Symmetrie von Zeit und Raum und ihre Verletzung in molekularen Prozessen,Jahrbuch der Akademie der Wissenschaften zu Berlin 1990–1992 (1993).Google Scholar
  107. [107]
    M. Quack, J. Mol. Struct. 292 (1993) 171.Google Scholar
  108. [108]
    M. Quack, Chem. Phys. Lett. 231 (1994) 421.Google Scholar
  109. [109]
    M. Quack, On the generation of superpositions of chiral amplitudes,and What is a molecular chirality, to appear in Faraday Disc. Chem. Soc. (1995).Google Scholar
  110. [110]
    G. Raggio, States and composite systems in W*-algebraic quantum mechanics, Thesis ETHZürich No. 6824, ADAG AG, Zürich (1981).Google Scholar
  111. [111]
    M. Reed and B. Simon,Methods of Modern Mathematical Physics, Vol. I: Functional Analysis (Academic Press, New York, 1972).Google Scholar
  112. [112]
    M. Reed and B. Simon,Methods of Modern Mathematical Physics, Vol. IV.: Analysis of Operators (Academic Press, New York, 1978).Google Scholar
  113. [113]
    P.D. Reilly and J.L. Skinner, Phys. Rev. Lett. 71 (1993) 4257.Google Scholar
  114. [114]
    P.M. Rentzepis and V.E. Bondybey, J. Chem. Phys. 80 (1984) 4727.Google Scholar
  115. [115]
    E.C. Reynhardt, Mol. Phys. 76 (1992) 525.Google Scholar
  116. [116]
    T. Sauter, W. Neuhauser, R. Blatt and P.E. Toschek, Phys. Rev. Lett. 57 (1986) 1696.Google Scholar
  117. [117]
    G.L. Sewell,Quantum Theory of Collective Phenomena (Clarendon Press, Oxford, 1986).Google Scholar
  118. [118]
    C. Sieiro, A. Sanchez, P. Crouigneau and C. Lamy, J. Chem. Soc. Perkin Trans. II (1982) 1069.Google Scholar
  119. [119]
    R. Silbey, Tunneling and relaxation in low temperature systems, in:Large-Scale Molecular Systems: Quantum and Stochastic Aspects, eds. W. Gans, A. Blumen and A. Amann (Plenum, London, 1991) pp. 147–152.Google Scholar
  120. [120]
    R. Silbey and R.A. Harris, J. Phys. Chem. 93 (1989) 7062.Google Scholar
  121. [121]
    P.B. Slater, Phys. Lett. A159 (1991) 411.Google Scholar
  122. [122]
    P. B. Slater, Phys. Lett. A163 (1992) 163.Google Scholar
  123. [123]
    H. Spohn, Models of statistical mechanics in one dimension originating from quantum ground states, in:Statistical Mechanics and Field Theory: Mathematical Aspects, eds. T.C. Dorlas Hugenholtz, N.M. and M. Winnink (Springer, Berlin, 1986).Google Scholar
  124. [124]
    H. Spohn, Commun. Math. Phys. 123 (1989) 277.Google Scholar
  125. [125]
    A. Stasiak and T. Koller, Analysis of DNA knots and catenanes allows to deduce the mechanism of action of enzymes which cut and join DNA strands, in:Fractals, Quasicrystals, Chaos, Knots and Algebraic Quantum Mechanics, Proc. NATO ASI on New Theoretical Concepts in Physical Chemistry, Maratea, Italy, 987, NATO ASI Series C235, eds. A. Amann, L. Cederbaum and W. Gans (Kluwer, Dordrecht, 1988) pp. 207–219.Google Scholar
  126. [126]
    F. Strocchi,Elements of Quantum Mechanics of Infinite Systems (World Scientific, Singapore, 1985).Google Scholar
  127. [127]
    D.W. Stroock and S.R.S. Varadhan,Multidimensional Diffusion Processes (Springer, Berlin, 1979).Google Scholar
  128. [128]
    D.W. Summers, Using knot theory to analyze DNA experiments, in:Fractals, Quasicrystals, Chaos, Knots and Algebraic Quantum Mechanics, Proc. NATO ASI on New Theoretical Concepts in Physical Chemistry,, Maratea, Italy, 198, NATO ASI Series C235, eds. A. Amann, L. Cederbaum and W. Gans (Kluwer, Dordrecht, 1988) pp. 221–232.Google Scholar
  129. [129]
    B.T. Sutcliffe, The concept of molecular structure, in:Theoretical Models of Chemical Bonding, Part 1: Atomic Hypothesis and the Concept of Molecular Structure, ed. Z.B. Maksiç (Springer, Berlin, 1990) pp. 1–28.Google Scholar
  130. [130]
    B.T. Sutcliffe, J. Mol. Struct. (Theochem) 259 (1992) 29.Google Scholar
  131. [131]
    M. Suzuki, Quantum Monte Carlo methods in equilibrium and nonequilibrium systems,Proc. Ninth Taniguchi Int. Symp. Susono, Japan,, 198 (Springer, Berlin, 1987).Google Scholar
  132. [132]
    M. Takesaki, Commun. Math. Phys. 17 (1970) 33.Google Scholar
  133. [133]
    W.G. Teich and G. Mahler, Phys. Rev. A45 (1992) 3300.Google Scholar
  134. [134]
    J.R. d. I. Vega, J.H. Busch, J.H. Schauble, K.L. Kunze and B.E. Haggert, J. Am. Chem. Soc. 104 (1982) 3295.Google Scholar
  135. [135]
    A.J. Vila, C. M. Lagier and A. C. Olivieri, J. Phys. Chem. 95 (1991) 5069.Google Scholar
  136. [136]
    M. Wächter, Zur Lokalisiering makroskopischer Systeme, Diplomarbeit ETH-Zürich, unpublished (1991).Google Scholar
  137. [137]
    H. Walther, Phase transitions of stored laser-cooled ions, in:Fundamental Systems in Quantum Optics, Les Houches Session 53, eds. J. Dalibard, J.M. Raimond and J. Zinn-Justin (North-Holland, Amsterdam, 1992).Google Scholar
  138. [138]
    A. Wehrl, Rev. Mod. Phys. 50 (1978) 221.Google Scholar
  139. [139]
    S.J. Weininger, J. Chem. Ed. 61 (1984) 939.Google Scholar
  140. [140]
    A.S. Wightman and N. Glance, Nucl. Phys. B (Proc. Suppl.) 6 (1989) 202.Google Scholar
  141. [141]
    U.P. Wild, M. Croci, F. Güttler, M. Pirotta and A. Renn, J. Lumin. 60 & 61 (1994) 1003.Google Scholar
  142. [142]
    U.P. Wild, F. Güttler, M. Pirotta and A. Renn, Chem. Phys. Lett. 193 (1992) 451.Google Scholar
  143. [143]
    R.G. Woolley, Adv. Phys. 25 (1976) 27.Google Scholar
  144. [144]
    R.G. Woolley, J. Am. Chem. Soc. 100 (1978) 1073.Google Scholar
  145. [145]
    R.G. Woolley, Natural optical activity and the molecular hypothesis, in:Structures versus Special Properties (Springer, Berlin, Heidelberg, 1982) pp. 1–35.Google Scholar
  146. [146]
    R.G. Woolley, Chem. Phys. Lett. 125 (1986) 200.Google Scholar
  147. [147]
    R.G. Woolley, Must a molecule have a shape?, New Scientist (22 October 1988) 53.Google Scholar
  148. [148]
    R.G. Woolley, Quantum theory and the molecular hypothesis, in:Molecules in Physics, Chemistry and Biology, Vol. 1, ed. J. Maruani (Kluwer, Dordrecht, 1988).Google Scholar
  149. [149]
    R.G. Woolley, J. Mol. Struct. (Theochem) 230 (1991) 17.Google Scholar
  150. [150]
    W. Zaoral, Towards a derivation of a non-linear stochastic Schrödinger equation, for the measurement process from algebraic quantum mechanics,Symp. on the Foundations of Modern Physics 1990 — Quantum Theory of Measurement and Related Philosophical Problems, eds. P. Lahti and P. Mittelstaedt (World Scientific, Singapore, 1991) pp. 479–486.Google Scholar
  151. [151]
    G. Zumofen, Personal communication (1995).Google Scholar
  152. [152]
    G. Zumofen and J. Klafter, Chem. Phys. Lett. 219 (1994) 303.Google Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1995

Authors and Affiliations

  • Anton Amann
    • 1
  1. 1.Laboratorium für Physikalische ChemieETH ZentrumZürichSwitzerland

Personalised recommendations