Advertisement

Journal of Mathematical Chemistry

, Volume 12, Issue 1, pp 81–95 | Cite as

Resistance distance

  • D. J. Klein
  • M. Randić
Article

Abstract

The theory of resistive electrical networks is invoked to develop a novel view: if fixed resistors are assigned to each edge of a connected graph, then the effective resistance between pairs of vertices is a graphical distance. Several theorems concerning this novel distance function are established.

Keywords

Physical Chemistry Distance Function Connected Graph Electrical Network Effective Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    F. Harary,Graph Theory (Addison-Wesley, Reading, 1969).Google Scholar
  2. [2]
    F. Buckley and F. Harary,Distance in Graphs (Addison-Wesley, Reading, 1989).Google Scholar
  3. [3]
    P.G. Doyle and J.L. Snell,Random walks and Electric Networks (Math. Assoc. Am., Washington, 1984).Google Scholar
  4. [4]
    C.St.J.A. Nash-Williams, Proc. Camb. Phil. Soc. 55 (1959)181.Google Scholar
  5. [5]
    G. Kirschhoff, Ann. Phys. Chem. 72 (1847)497; for a reprint (Engl. transl.), see: IRE Trans. Cit. Th. 5(1958)4.Google Scholar
  6. [6]a
    S. Seshu and M.B. Reed,Linear Graphs and Electical Networks (Addison-Wesley, Reading, 1961); J. Ponstein, Matrices in Graph and Network Theory (Van Gorcum, Assen, 1966); J.A. Edminster, Electric Circuits (McGraw-Hill, New York, 1965).Google Scholar
  7. [7]
    F.R. Gammacher,The Theory of Matrices (Chelsea, New York, 1959) ch. 13.Google Scholar
  8. [8]
    L. Weinberg, IRE Trans. Cir. Th. 5 (1958)8.Google Scholar
  9. [9]
    R.L. Graham and L. Lovasz, Adv. Math. 29 (1978)60.Google Scholar
  10. [10]
    R.L. Graham, A.J. Hoffman and H. Hosoya, J.Graph Theory 1 (1977)85.Google Scholar
  11. [11]
    E.G.P. Krivka and N. Trinajstić, Aplik. Mat. 28 (1983)357.Google Scholar
  12. [12]
    D.H. Rouvray, in:Mathematical and Computational Concepts in Chemistry, ed. N. Trinajstić (Ellis Horwood, Chichester, 1986) pp. 295–306; J. Comput. Chem. 8(1987)470.Google Scholar
  13. [13]
    H. Wiener, J. Am. Chem. Soc. 69 (1947)17, 2636.Google Scholar

Copyright information

© Baltzer AG, Science Publishers 1993

Authors and Affiliations

  • D. J. Klein
    • 1
  • M. Randić
    • 2
  1. 1.Department of Marine SciencesTexas A&M University at GalvestonTXGalvestonUSA
  2. 2.Department of MathematicsDrake UniversityIADes MoinesUSA

Personalised recommendations