Mineralogy and Petrology

, Volume 43, Issue 1, pp 49–63 | Cite as

Geochemistry and evolution of the fanos granite, N. Greece

  • G. Christofides
  • T. Soldatos
  • A. Koroneos


The Fanos granite, a Jurassic pluton composed of high silica fine- to coarse-grained leucogranites, is associated with and intrudes the Mesozoic Guevgueli ophiolitic complex. Discriminant diagrams indicate a collision related plate tectonic environment for the rocks studied. They are peraluminous with calc-alkaline affinities. Major and trace element behaviour suggest a fractional crystallization process for the evolution of the Fanos granite. Petrographic calculations, based on major elements, require 32% crystal accumulation mainly of plagioclase, K-feldspar and biotite for a direct model, while for a two-step model 21% and 14% crystal cumulate is required for the first and the second step respectively.

Geochemie und Entwicklungsgeschichte des Fanos-Granites, N-Griechenland


Der jurassische Fanos-Granit ist ein fein- bis grobkörniger Leukogranit mit hohem Silikatanteil. Er ist mit dem mesozoischen Ophiolithkomplex von Guevgueli, mit dem er in instrusivem Kontakt steht, verknüpft.

Diskriminierungsdiagramme weisen darauf hin, dab die untersuchten Gesteine im Zuge kollisions-tektonischer Prozesse gebildet wurden. Die untersuchten peraluminösen Gesteine folgen einem kalkalkalischen Trend. Die Haupt- und Spurenelementverteilungen belegen eine fraktionierte Kristallisation des Fanos-Granites. Einfache Mischungsmodell-Berechnungen, die mittels der Hauptelemente erstellt wurden, ergeben eine 32 %ige Kristallakkumulation von vorwiegend Plagioklas, Kalifeldspat und Biotit. Eine Zweistufenmodell-Berechnung ergab eine 21- beziehungsweise 14 %ige Kristallakkumulation für die erste und zweite Stufe.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson JL, Cullers RL, Van Schmus WR (1980) Anorogenic metaluminous and peraluminous granite plutonism in the Mid-Proterozoic of Wisconsin, USA. Contrib Mineral Petrol 74: 311–328Google Scholar
  2. Andronopoulos B (1965) The geology and mineralization of the Axioupolis area (Central Macedonia). Geol Geoph Res IGSR Athens, (in greek with english abstract) 9: 145–173Google Scholar
  3. Bebien J (1977) Mafic and ultramafic rocks associated with granites in the Vardar zone. Nature 270: 232–234Google Scholar
  4. —— (1981) A propos de 1' association de certaines formations ignées basiques á caractéres ophiolitiques avec des granites et des migmatites. C R Acad Sci Paris 292-II: 733–735Google Scholar
  5. — (1982) L' association ingée de Guevgueli (Macédoine Greque), expression d'un magmatisme ophiolitique dans une dechirure continentale. Thése d' Etat, Nancy (unpubl): 470 ppGoogle Scholar
  6. ——Ohnenstetter D, Ohnenstetter M, Vergely P (1980) Diversity of the Greek ophiolites: Birth of oceanic basins in transcurrent systems. Ofioliti (Spec Iss Tethyan Ophiolites) 2: 129–197Google Scholar
  7. Borsi S, Ferrara G, Mercier J, Tongiori E (1966) Age stratigraphique et radiometrique Jurassique supérieur d'un granite des zones internes des Hellénides (granite de Fanos, Macédoine, Grèce). Rev Geog Phys Geol Dyn 8: 279–287Google Scholar
  8. Chappell BW, White AJR (1974) Two contrasting granite types. Pacific Geol 8: 173–174Google Scholar
  9. Christofides G, Soldatos T, Koroneos A (1989) Geochemistry, evolution and origin of the Fanos granite (Northern Greece). Fifth meeting of the European Union of Geosciences (EUG). Terra Abstracts 1: 282Google Scholar
  10. Cocherie A (1986) Systematic use of trace element distribution patterns in log-log diagrams for plutonic suites. Geochim Cosmochim Acta 50: 2517–2522Google Scholar
  11. Deer WA, Howie RA, Zussman J (1978) An introduction to the rock-forming minerals. Longman, London, 528 ppGoogle Scholar
  12. Hanson GN (1978) The application of trace elements to the petrogenesis of igneous rocks of granitic composition. Earth Planet Sci Lett 38: 26–43Google Scholar
  13. Harris NBW, Pearce JA, Tindle AG (1986) Geochemical characteristics of collision-zone magmatism. In:Coward MP, Ries AC (eds) Collision tectonics. Geol Soc Spec Publ No 19. Blackwell Scientific Publications, Oxford, pp 67–81Google Scholar
  14. IUGS (1973) Classification and nomenclature of plutonic rocks. N Jb Miner Mh 4: 149–164Google Scholar
  15. Karamata S, Majer V, Pamic J (1980) Ophiolites of Yugoslavia. Ofioliti (Spec Iss Tethyan Ophiolites) 1: 105–125Google Scholar
  16. Le Maitre RW (1981) GENMIX-A generalized petrological mixing model program. Computers & Geosciences 7: 229–247Google Scholar
  17. Maaløe S (1985) Principles of igneous petrology. Springer, Berlin Heidelberg New York, 374 ppGoogle Scholar
  18. Marakis G (1969) Geochronology studies of some granites from Macedonia. Ann Geol Pays Hell 21: 121–152Google Scholar
  19. McCarthy TS (1976) Chemical interrelationships in a low pressure granulite terrain in Namaqualand, South Africa, and their bearing on granite genesis and the composition of the lower crust. Geochim Cosmochim Acta 40: 1057–1068Google Scholar
  20. Mercier J (1968) Etude geologique des zones internes des Hellénides en Macédonne centrale (Grèce). Contribution á l'étude du metamorphism et de 1' évolution magmatique des zones internes des Hellénides. Ann Geol Pays Hell 20: 1–792Google Scholar
  21. Neiva ANR, NeivaJMC, Parry SJ (1987) Geochemistry of the granitic rocks and their minerals from Serra da Estrela, Central Portugal. Geochim Cosmochim Acta 51: 439–454Google Scholar
  22. Nicolas A, Jackson ED (1972) Repartition en deux provinces des peridotites des chaînes alpines longeant la méditerranée: implications géotectoniques. Schweiz Min Petr Mitt 52: 479–495Google Scholar
  23. Pearce JA, Harris NBW, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25: 956–983Google Scholar
  24. Spray JG, Bebien J, Rex DC, Roddick JC (1984) Age constraints on the igneous and metamorphic evolution of the Hellenic-Dinaric ophiolites. In:Dixon JE, Robertson AHF (eds) The geological evolution of the Eastern Mediterranean. Geol Soc Spec Publ No 17. Blackwell Scientific Publications, Oxford, pp 619–627Google Scholar
  25. Streckeisen A, Le Maitre RW (1979) A chemical approximation to the modal QAPF classification of the igneous rocks. N Jb Miner Abh 136: 169–206Google Scholar
  26. Taylor SR (1965) The application of trace element data to problems in petrology. Phys Chem Earth 6: 133–213Google Scholar
  27. Thorton CP, Tutlle OF (1960) Chemistry of igneous rocks, I. Differentiation Index. Amer J Sci 258: 664–684Google Scholar
  28. Tsamantourides P, Pergamalis F (1977) Geological and metallogenetic map of “Fanos-Piyi” area, Kilkis district. IGME, Athens, unpublished report, (in greek): 29 ppGoogle Scholar
  29. White AJR, Beams SD, Cramer JJ (1977) Granitoid types and mineralization with special reference to tin. In:Yamada N (ed) Plutonism in relation to volcanism and metamorphism, Int Corr Prog 7th Circum-Pac Plutonism Proj Meet, Toyama, pp 89–100Google Scholar
  30. ——Chappell BW (1977) Ultrametamorphism and granitoid genesis. Tectonophysics 43: 7–22Google Scholar
  31. — — (1983) Granitoid types and their distribution in the Lachlan Fold Belt, Southeastern Australia. In:Roddick JA (ed) Circum-Pacific Plutonic Terranes, Geol Soc Am Mem, pp 21–34Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • G. Christofides
    • 1
  • T. Soldatos
    • 1
  • A. Koroneos
    • 1
  1. 1.Department of Mineralogy-Petrology-Economic GeologyUniversity of ThessalonikiThessalonikiGreece

Personalised recommendations