Mathematische Zeitschrift

, Volume 191, Issue 2, pp 283–291

On even unimodular positive definite quadratic lattices of rank 32

  • Michio Ozeki
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. London: Dover 1965Google Scholar
  2. 2.
    Broué, M., Enguehard, M.: Une famille infinie de formes quadratiques entières; leurs groupes d'automorphismes. Ann. Scient. Éc. Norm. Sup.6, 17–52 (1973)Google Scholar
  3. 3.
    Conway, J.H., Pless, V.: On the Enumeration of Self-Dual codes, J. Comb. Theor., Ser. A28, 26–53 (1980)Google Scholar
  4. 4.
    Hecke, E.: Analytische Arithmetik der positiven quadratischen Formen, Kgl. Danske Videnskabernes Selskab. Math.-fys. Medd.17, no. 12 (1940)Google Scholar
  5. 5.
    Leech, J., Sloane, N.J.A.: Sphere packings and error-correcting codes. Can. J. Math.23, 718–745 (1971)Google Scholar
  6. 6.
    Niemeier, H.-V.: Definite quadratische Formen der Discriminante 1 und Dimension 24, J. Number Theory5, 142–178 (1973)Google Scholar
  7. 7.
    Ozeki, M.: On Modular forms whose Fourier coefficients are non-negative integers with the constant term unity. Math. Ann.206, 187–203 (1973)Google Scholar
  8. 8.
    Ozeki, M.: Note on the positive definite integral quadratic lattice. J. Math. Soc. Japan28, 421–446 (1976)Google Scholar
  9. 9.
    Schoeneberg, B.: Das Verhalten von mehrfachen Thetareihen bei Modulsubstitutionen. Math. Ann.116, 511–523 (1939)Google Scholar
  10. 10.
    Siegel, C.L.: Über die Fourierschen Koeffizienten der Eisensteinschen Reihen. Danske Vid. Selskab. Mat-fys. Medd.34, No. 6 (1964)Google Scholar
  11. 11.
    Venkov, B.B.: On the classification of integral even unimodular 24-dimensional quadratic forms. Proc. Steklov Inst. Math.148, Eng. trans. 63–74 (1980)Google Scholar
  12. 12.
    Venkov, B.B.: Even unimodular Euclidean lattices in dimension 32. (Russian), Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI)116, 44–55 (1982). Eng. trans. Journal of Soviet Mathematics26, 1860–1867 (1984)Google Scholar
  13. 13.
    Venkov, B.B.: Even unimodular Euclidean lattices of dimension 32, Part II, (Russian), Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov134, 34–58 (1984)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Michio Ozeki
    • 1
  1. 1.Department of Mathematics, Faculty of Liberal ArtsNagasaki UniversityNagasakiJapan

Personalised recommendations