Advertisement

Mathematische Zeitschrift

, Volume 188, Issue 1, pp 91–100 | Cite as

On Artin-Verdier duality for function fields

  • Christopher Deninger
Article

Keywords

Function Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Artin, M.: Théorèmes de Representabilité pour les Espaces Algebriques. Montréal: Presses de l'Université de Montréal 1973Google Scholar
  2. 2.
    Artin, M., Grothendieck, A., Verdier, J.-L.: Théorie des topos et cohomologie étale des schémas (SGA 4) Tome 3. Lecture Notes in Mathematics305. Berlin-Heidelberg-New York: Springer 1973Google Scholar
  3. 3.
    Artin, M., Milne, J.: Duality in the flat cohomology of curves. Invent. Math.35, 111–129 (1976)Google Scholar
  4. 4.
    Artin, M., Verdier, J.-L.: Seminar on étale cohomology of number fields. Woods Hole (1964)Google Scholar
  5. 5.
    Frey, G.: Dualitätssatz für endliche kommutative Gruppenschemata über Kongruenzfunktionenkörpern. J. Reine Angew. Math.301, 46–58 (1978)Google Scholar
  6. 6.
    Grothendieck, A.: Le groupe de Brauer III, Examples et compléments. In: Dix Exposés sur la Cohomologie des Schémas, pp. 88–188. Amsterdam: North-Holland 1968Google Scholar
  7. 7.
    Grothendieck, A., Diendonné, J.: Etude globale élémentaire de quelques classes de morphismes. (EGA II). Inst. Hautes Etudes Sci. Publ. Math.8 (1961)Google Scholar
  8. 8.
    Grothendieck, A., Diendonné, J.: Etude locale des schémas et des morphismes de schémas. (EGA IV, 2, 4) Ibid24, 32 (1965, 1967)Google Scholar
  9. 9.
    Haberland, K.. Galois cohomology of algebraic number fields. Berlin: VEB Deutscher Verlag der Wissenschaften 1978Google Scholar
  10. 10.
    Mazur, B.: Notes on étale cohomology of number fields. Ann. Sci. Ecole Norm. Sup.6, 521–556 (1973)Google Scholar
  11. 11.
    Milne, J.: The Tate-Safarevic group of a constant Abelian variety. Invent. Math.6, 91–105 (1968)Google Scholar
  12. 12.
    Milne, J.: Etale Cohomology, Princeton, New Jersey: Princeton University Press 1980Google Scholar
  13. 13.
    Mumford, D.: Abelian Varieties, Oxford: Oxford University Press 1970Google Scholar
  14. 14.
    Poitou, G.: Cohomology Galoisienne des Modules finis. Paris: Dunod 1967Google Scholar
  15. 15.
    Serre, J.-P.: Groupes Algébriques et Corps de Classes, Paris: Hermann 1959Google Scholar
  16. 16.
    Takahashi, T.: Galois cohomology in unramified extensions of algebraic function fields. Tohoku Math. J.24, 33–39 (1972)Google Scholar
  17. 17.
    Tate, J.: Duality Theorems in Galois Cohomology over number fields. Proc. Congr. Stockholm, pp.288–295 (1962)Google Scholar
  18. 18.
    Zink, Th.: Etale cohomology and duality in number fields. Appendix 2 in reference 9.Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Christopher Deninger
    • 1
  1. 1.NWF I-MathematikUniversität RegensburgRegensburgGermany

Personalised recommendations