Mathematische Zeitschrift

, Volume 191, Issue 1, pp 145–158 | Cite as

Length formulas for the local cohomology of exterior powers

  • Winfried Bruns
  • Udo Vetter
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angeniol, B., Giusti, M.: Liaisons numérique et intersections complètes. To appearGoogle Scholar
  2. 2.
    Buchsbaum, D.A., Eisenbud, D.: Generic free resolutions and a family of generically perfect ideals. Adv. Math.18, 245–301 (1975)Google Scholar
  3. 3.
    Buchsbaum, D.A., Eisenbud, D.: What makes a complex exact? J. Algebra25, 259–268 (1973)Google Scholar
  4. 4.
    Buchsbaum, D.A., Eisenbud, D.: What annihilates a module? J. Algebra47, 231–243 (1977)Google Scholar
  5. 5.
    Bruns, W., Vetter, U.: Zur Längenberechnung der Torsion äußerer Potenzen. Manuscr. Math.14, 337–348 (1975)Google Scholar
  6. 6.
    Eisenbud, D., Evans, E.G.: Generating modules efficiently: Theorems from algebraicK-theory. J. Algebra27, 278–305 (1973)Google Scholar
  7. 7.
    Eagon, J., Northcott, D.G.: Ideals defined by matrices and a certain complex associated with them. Proc. R. Soc.A 269, 88–204 (1962)Google Scholar
  8. 8.
    Greuel, G.M.: Dualität in der lokalen Kohomologie isolierter Singularitäten. Math. Ann.250, 157–173 (1980)Google Scholar
  9. 9.
    Grothendieck, A.: Eléments de géométrie algébrique. Publ. Math. I.H.E.S.32 (1967)Google Scholar
  10. 10.
    Hochster, M., Huneke, C.: The length of generic modules. Notes by C. Huneke after M. Hochster. UnpublishedGoogle Scholar
  11. 11.
    Herzog, J., Kühl, M.: On the Bettinumbers of finite pure and linear resolutions. Commun. Algebra12, 1627–1646 (1984)Google Scholar
  12. 12.
    Kersken, M.: Reguläre Differentialformen. Manuscr. Math.46, 1–25 (1984)Google Scholar
  13. 13.
    Lebelt, K.: Torsion äußerer Potenzen von Moduln der homologischen Dimension 1. Math. Ann.211, 183–197 (1974)Google Scholar
  14. 14.
    Lebelt, K.: Freie Auflösungen äußerer Potenzen. Manuscr. Math.21, 341–355 (1977)Google Scholar
  15. 15.
    Matsumura, H.: Commutative Algebra, Second Edition. New York: W.A. Benjamin 1980Google Scholar
  16. 16.
    Naruki, I.: Some remarks on isolated singularity and their application to algebraic manifolds. Publ. Res. Inst. Math. Sci.13, 17–46 (1977)Google Scholar
  17. 17.
    Scheja, G., Storch, U.: Differentielle Eigenschaften der Lokalisierungen analytischer Algebren. Math. Ann.197, 137–170 (1972)Google Scholar
  18. 18.
    Vetter, U.: Äußere Potenzxen von Differentialmoduln reduzierter vollständiger Durchschnitte. Manuscr. Math.2, 67–75 (1970)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Winfried Bruns
    • 1
  • Udo Vetter
    • 1
  1. 1.Fachbereich Naturwissenschaften, MathematikUniversität Osnabrück, Abt. VechtaVechtaFederal Republic of Germany

Personalised recommendations