Advertisement

Mathematische Zeitschrift

, Volume 191, Issue 1, pp 73–90 | Cite as

Contractive automorphisms on locally compact groups

  • Eberhard Siebert
Article

Keywords

Compact Group Contractive Automorphism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aoki, N.: Group automorphisms with finite entropy. Monatsh. Math.88, 275–285 (1979)Google Scholar
  2. 2.
    Aoki, N.: Expansive automorphisms of locally compact groups. Tokyo J. Math.2, 343–347 (1979)Google Scholar
  3. 3.
    Bourbaki, N.: Eléments de Mathématique XXXVIII: Groupes et Algèbres de Lie. Chapitres 7 et 8. Actual. Scient. Ind. 1364. Paris: Hermann 1975Google Scholar
  4. 4.
    Dorroh, J.R.: Semi-groups of maps in a locally compact space. Can. J. Math.19, 688–696 (1967)Google Scholar
  5. 5.
    Drisch, Th., Gallardo, L.: Stable laws on the Heisenberg group. In: Probability Measures on Groups VII. Proceedings, Oberwolfach 1983, pp. 56–79. Lecture Notes in Math. Vol.1064. Berlin-Heidelberg-New York-Tokyo: Springer 1984Google Scholar
  6. 6.
    Eisenberg, M.: Expansive transformation semi-groups of endomorphisms. Fundam. Math.59, 313–321 (1966)Google Scholar
  7. 7.
    Goodman, R.: Filtration and asymptotic automorphisms on nilpotent Lie groups. J. Differ. Geom.12, 183–196 (1977)Google Scholar
  8. 8.
    Hazod, W.: Stable probabilities on locally compact groups. In: Probability Measures on Groups. Proceedings, Oberwolfach 1981, pp. 183–208. Lecture Notes in Math. Vol.928 Berlin-Heidelberg-New York: Springer 1982Google Scholar
  9. 9.
    Hazod, W.: Remarks on [semi-]stable probabilities. In: Probability Measures on Groups VII. Proceedings, Oberwolfach 1983, pp. 182–203. Lecture Notes in Math. Vol.1064. Berlin-Heidelberg-New York-Tokyo: Springer 1984Google Scholar
  10. 10.
    Hazod, W.: Stable and semistable probabilities on groups and on vector spaces. In: Probability Theory on Vector Spaces III. Proceedings, Lublin 1983, pp. 69–89. Lecture Notes in Math. Vol.1080. Berlin-Heidelberg-New York-Tokyo: Springer 1984Google Scholar
  11. 11.
    Hewitt, E., Ross, K.A.: Abstract Harmonic Analysis I. Berlin-Göttingen-Heidelberg: Springer 1963Google Scholar
  12. 12.
    Hochschild, G.: The Structure of Lie Groups. San Francisco-London-Amsterdam: Holden Day 1965Google Scholar
  13. 13.
    Lam, P.-F.: On expansive transformation groups. Trans. Am. Math. Soc.150, 131–138 (1970)Google Scholar
  14. 14.
    Lawton, W.: The structure of compact connected groups which admit an expansive automorphism. In: Recent Advances in Topological Dynamics. Proceedings, New Haven 1972, pp. 182–196. Lecture Notes in Math. Vol.318. Berlin-Heidelberg-New York: Springer 1973Google Scholar
  15. 15.
    Montgomery, D., Zippin, L.: Topological Transformation Groups. New York: Interscience Publ. 1966Google Scholar
  16. 16.
    Müller-Römer, P.R.: Kontrahierbare Erweiterungen kontrahierbarer Gruppen. J. Reine Angew. Math.283/284, 238–264 (1976)Google Scholar
  17. 17.
    Siebert, E.: Semistable convolution semigroups on measurable and topological groups. Ann. Inst. H. Poincaré20, 147–164 (1984)Google Scholar
  18. 18.
    Wang, J.S.P.: The Mautner phenomenon forp-adic Lie groups. Math. Z.185, 403–411 (1984)Google Scholar
  19. 19.
    Wu, T.S.: Expansive automorphisms in compact groups. Math. Scand.18, 23–24 (1966)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Eberhard Siebert
    • 1
  1. 1.Mathematisches Institut der UniversitätTübingen 1Federal Republic of Germany

Personalised recommendations