Mathematische Zeitschrift

, Volume 184, Issue 3, pp 425–433 | Cite as

The Serre problem for discrete hodge algebras

  • Ton Vorst


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, D.: Projective modules over subrings ofk[X, Y] generated by monomials. Pacific J. Math.79, 5–17 (1978)Google Scholar
  2. 2.
    Bass, H.: AlgebraicK-theory. New York: Benjamin 1968Google Scholar
  3. 3.
    Brewer, J., Costa, D.L.: Seminormality and projective modules over polynomial rings. J. Pure Appl. Algebra13, 157–163 (1978)Google Scholar
  4. 4.
    Bhatwadekar, S.M., Roy, A.: Stability theorems for overrings. Invent. Math.68, 117–127 (1982)Google Scholar
  5. 5.
    De Concini, C., Eisenbud, D., Procesi, C.: Hodge algebras. Asterisque91. Paris: Soc. Math. de France 1982Google Scholar
  6. 6.
    Cohn, P.M.: On the structure ofGL 2 of a ring. Inst. Hautes Études Sci. Publ. Math.30, 365–413 (1966)Google Scholar
  7. 7.
    Dayton, B.H.:K-theory of tetrahedra. J. Algebra56, 129–144 (1979)Google Scholar
  8. 8.
    Dayton, B. H., Weibel, C.:K-theory of hyperplanes. Trans. Amer. Math. Soc.257, 119–141 (1980)Google Scholar
  9. 9.
    Dayton, B.H., Weibel, C.: A spectral sequence for theK-theory of affine glued schemes. Lecture Notes in Math.854, pp. 24–92. Berlin-Heidelberg-New York: Springer 1981Google Scholar
  10. 10.
    Karoubi, M., Villamayor, O.:K-theorie algebrique etK-theorie topologique. Math. Scand.28, 265–307 (1971)Google Scholar
  11. 11.
    Lindel, H.: Projektive Moduln über PolynomringeA[T 1,...,T m] mit einem regulären GrundringA. Manuscripta Math.23, 143–154 (1978)Google Scholar
  12. 12.
    Lindel, H.: On the Bass-Quillen conjecture concerning projective modules over polynomial rings. Invent. Math.65, 319–323 (1981)Google Scholar
  13. 13.
    Lindel, H., Lütkebohmert, W.: Projektive Moduln über polynomialen Erweiterungen von Potenzreihenringen. Arch. Math. (Basel)28, 51–54 (1977)Google Scholar
  14. 14.
    Milnor, J.: Introduction to algebraicK-theory. Princeton: Princeton University Press 1971Google Scholar
  15. 15.
    Mohan Kumar, N.: On a question of Bass and Quillen. PreprintGoogle Scholar
  16. 16.
    Quillen, D.: Projective modules over polynomial rings. Invent. Math.36, 167–171 (1976)Google Scholar
  17. 17.
    Reisner, G., Cohen-Macaulay quotients of polynomial rings. Advances in Math.21, 30–49 (1976)Google Scholar
  18. 18.
    Roitman, M.: On projective modules over polynomial rings. J. Algebra58, 51–63 (1979)Google Scholar
  19. 19.
    Roy, A.: Application of patching diagrams to some questions about projective modules. J. Pure Appl. Algebra24, 313–319 (1982)Google Scholar
  20. 20.
    Suslin, A.A.: Projective modules over polynomial rings are free. Dokl. Akad. Nauk. S.S.S.R.229, 1063–1066 (1976) [Russian]; English transl.: Soviet Math. Dokl.17, 1160–1164 (1976)Google Scholar
  21. 21.
    Suslin, A.A.: On the structure of the special linear group over polynomial rings. Math. USSR Izv.11, 221–238 (1977)Google Scholar
  22. 22.
    Vorst, T.: The general linear group of polynomial rings over regular rings. Comm. Algebra9, 499–509, 1981Google Scholar
  23. 23.
    Vorst, T.: A survey on theK-theory of polynomial extensions. PreprintGoogle Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Ton Vorst
    • 1
  1. 1.Econometric InstituteRotterdamThe Netherlands

Personalised recommendations