Mathematische Zeitschrift

, Volume 187, Issue 1, pp 75–80

Indecomposables over representation-finite algebras are extensions of an indecomposable and a simple

  • Klaus Bongartz
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Auslander, M., Reiten, I.: Representation theory of artin algebras III. Comm. Algebra3, 239–294 (1975)Google Scholar
  2. 2.
    Bongartz, K.: Tilted algebras, In Springer Lecture Notes in Math.903, pp. 26–38. Berlin-Heidelberg-New York: Springer 1981Google Scholar
  3. 3.
    Bongartz, K.: Treue einfach zusammenhängende Algebren I and II. Comment. Math. Helv.57, 282–300 (1982) and Unpubl. Computer list (1982)Google Scholar
  4. 4.
    Bongartz, K.: Algebras and quadratic forms. To appear in J. London Math. Soc.Google Scholar
  5. 5.
    Bongartz, K., Gabriel, P.: Covering spaces in representation theory. Invent. math.65, 331–378 (1982)Google Scholar
  6. 6.
    Borel, A.: Linear algebraic groups. New York-Amsterdam: Benjamin 1969Google Scholar
  7. 7.
    Bretscher, O., Gabriel, P.: The standard form of a representation-finite algebra. Bull. Soc. Math. France111, 21–40 (1983)Google Scholar
  8. 8.
    Dlab, V., Ringel, C.M.: A module theoretic interpretation of properties of the root systems. Proceedings of a Conference on Ring Theory (Antwerp 1978). New York-Basel: Dekker 1979Google Scholar
  9. 9.
    Gabriel, P.: Finite representation type is open. Lecture Notes in Math.488, pp. 132–155. Berlin-Heidelberg-New York: Springer 1975Google Scholar
  10. 10.
    Happel, D., Ringel, C.M.: Tilted algebras. Trans. Amer. Math. Soc.274, 399–443 (1982)Google Scholar
  11. 11.
    Riedtmann, C.: Algebren, Darstellungen, Überlagerungen und zurück. Comment. Math. Helv.55, 199–224 (1980)Google Scholar
  12. 12.
    Voigt, D.: Induzierte Darstellungen in der Theorie der endlichen, algebraischen Gruppen. Lecture Notes in Math.592. Berlin-Heidelberg-New York: Springer 1977Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Klaus Bongartz
    • 1
  1. 1.Mathematisches Institut BUniversität StuttgartStuttgart 80West Germany

Personalised recommendations