Advertisement

Mineralogy and Petrology

, Volume 45, Issue 3–4, pp 231–246 | Cite as

Rare earth element fractionation in metamorphogenic hydrothermal calcite, magnesite and siderite

  • M. Bau
  • P. Möller
Article

Summary

Normalized REE patterns of aqueous solutions and their precipitates bear information on the physico-chemical environments a fluid experienced during REE mobilization, fluid migration and minerogenesis. Positive Eu and Yb anomalies indicate REE mobilization by a F-, OH- and CO32−-poor fluid in a high-temperature regime, but are only retained by a precipitating mineral if precipitation occurs in a low-temperature environment. Negative Ce anomalies are typical of oxidizing conditions and are unlikely to develop during siderite precipitation. LREE/HREE fractionation is controlled by fluid composition and “mineralogical control”. REE patterns of Ca minerals allow to class the reacting fluids in “normal” (Ca/ligand ≫ 1) and “ligand-enriched” (Ca/ligand ≈ 1), the latter being characteristic for remobilization processes.

The Radenthein magnesite and Hüttenberg siderite deposits, both Carinthia, Austria, are discussed and shown to be of non-sedimentary, non-metamorphic, but metamorphogenic metasomatic origin.

Keywords

CO32 Magnesite Siderite Poor Fluid Metasomatic Origin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Fraktionierung der seltenen Erd-Elemente in metamorphogenen hydrothermoclen Calciten, Magnesiten und Sideriten

Zusammenfassung

Normierte Lanthaniden-Verteilungsmuster wässeriger Lösungen und deren Präzipitate enthalten Informationen über die verschiedenen physiko-chemischen Bedingungen, denen die Fluidphase während der Mobilisierung der Lanthaniden, der Migration und der Minerogenese ausgesetzt war. Positive Eu- und Yb-Anomalien weisen auf eine Mobilisierung der Lanthaniden bei erhöhten Temperaturen durch eine F-, OH-und CO32−-arme Lösung. Die positiven Anomalien der Lösung werden jedoch nur dann auf ein Mineral übertragen, wenn dessen Präzipitation in einem niedrigen Temperaturbereich erfolgt. Negative Ce-Anomalien sind Indikatoren oxischer Bedingungen, weshalb ihre Entwicklung im Verlauf einer Siderit-Präzipitation weitgehend ausgeschlossen werden kann. Die Fraktionierung von leichten und schweren Lanthaniden wird von der chemischen Zusammensetzung der Fluidphase und der “mineralogischen Kontrolle” bestimmt. Die Lanthaniden-Verteilungsmuster von Ca-Mineralen erlauben es, deren Mutter-Lösungen in “normal” (Ca/Liganil ≫1) und “Liganden-reich” (Ca/Liganil ≈ 1) zu untergliedern, wobei letztere für Remobilisierungsprozesse typisch sind.

Verschiedene minerogenetische Modelle für Spatmagnesite aus der Lagerstätte Radenthein und Siderite aus der Lagerstätte Hüttenberg, beide Kärnten, Österreich, werden vor dem Hintergrund deren Lanthaniden-Verteilung diskutiert. Es wird gezeigt, daß sowohl für die Radenthein-Magnesite als auch für die Hüttenberg-Siderite nur ein nicht-sedimentäres, nicht-metamorphes, wohl aber metamorphogen-metasomatisches minerogenetisches Modell mit der Lanthaniden-Verteilung kompatibel ist.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Appel PWU (1987) Geochemistry of the Early Archaean Isua Iron-Formation, West Greenland. In:Appel PWU, LaBerge GL (eds) Precambrian Iron-Formations. Theophrastus Publications, Athens, pp 31–67Google Scholar
  2. Bau M (in press) REE mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium. Chem Geol 93Bilal AL (in press) Thermodynamic study of Eu3+/Eu2+ redox reaction in aqueous solutions at elevated temperatures and pressures by means of cyclic voltammetry. Lanthan Actin ResGoogle Scholar
  3. — (subm) Note on the aqueous geochemistry of the rare-earth elements: Comments on “The aqueous geochemistry of the rare-earth elements and yttrium. 2. Theoretical predictions of speciation in hydrothermal solutions to 350°C at saturation water vapor pressure” bySA Wood. Chem GeolGoogle Scholar
  4. Campbell AC, Palmer MR, Klinkhammer GP, Bowers TS, Edmond JM, Lawrence JR, Casey JF, Thompson G, Humphries S, Rona P, Karson JA (1988) Chemistry of hot springs on the Mid-Atlantic Ridge. Nature 335: 514–519Google Scholar
  5. Clar E, Meixner H (1953) Die Eisenspatlagerstätte von Hüttenberg und ihre Umgebung. Carinthia II 143/63: 67–92Google Scholar
  6. ——,Meixner H (1981) Die grundlegenden Beobachtungen zur Entstehung der Eisenspatlagerstätten von Hüttenberg. Carinthia II 171/91: 55–92Google Scholar
  7. Dieber K (1981) Geologischer Überblick über die Eisenspatlagerstätte Hüttenberg. In: “2500 Jahre Eisen aus Hüttenberg”, Kärntner Museumsschriften 68: 24-34Google Scholar
  8. Doerner HA, Hoskins WM (1925) Co-precipitation of radium and Ba sulfates. Am Chem Soc 47: 662–675Google Scholar
  9. Dulski P, Morteani G (1989) Magnesite formation by CO2 metasomatism during regional metamorphism of the ultrabasic rocks of the Ochsner serpentinite (Zillertaler Alpen, Tyrol, Austria). In:Möller P (ed) Magnesite: Geology, mineralogy, geochemistry, formation of Mg-carbonates. Monogr Ser Min Dep N° 28. Borntrager, Berlin, pp 95–104Google Scholar
  10. Elderfield H, Sholkovitz ER (1987) Rare earth elements in the pore waters of reducing nearshore sediments. Earth Planet Sci Lett 82: 280–288Google Scholar
  11. —— (1990) The rare earth elements in rivers, estuaries and coastal seas and their significance to the composition of ocean waters. Geochim Cosmochim Acta 54: 971–991Google Scholar
  12. Evensen NM, Hamilton PJ, O'Nions RK (1978) Rare-earth abundances in chondritic meteorites. Geochim Cosmochim Acta 42: 1199–1212Google Scholar
  13. Exner Ch (1980) Das Kristallin östlich der Katschbergzone. Mitt österr geol Ges 71/72: 167–189Google Scholar
  14. Frimmel H (1988) Strontium isotopic evidence for the origin of siderite, ankerite and magnesite mineralizations in the Eastern Alps. Mineral Deposita 23: 268–275Google Scholar
  15. —— (1991) Strontium isotopes in magnesites from Permian and Triassic strata, Eastern Alps. App Geochem 6: 89–96Google Scholar
  16. Fuchs HW (1980) Korngefügeanalytische Untersuchungen der Siderit-Lagerstätte Hüttenberg (Kärnten). Tscherm Min Petrol Mitt 27: 233–260Google Scholar
  17. Hu X, Wang YL, Schmitt RA (1988) Geochemistry of sediments on the Rio Grande Rise and the redox evolution of the South Atlantic Ocean. Geochim Cosmochim Acta 52: 201–208Google Scholar
  18. Matsui M (1966) The coprecipitation behaviour of rare earth elements with calcium oxalate upon precipitation from homogeneous systems. Bull Chem Soc Japan 39: 1114–1119Google Scholar
  19. McLennan SR (1989) Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes. In:Lipin BR, McKay GA (eds) Geochemistry and mineralogy of rare earth elements. Reviews in Mineralogy, vol 21. Min Soc Amer Washington, pp 169-200Google Scholar
  20. Michard A, Albarede F, Michard G, Minster JF, Charlou JL (1983) Rare-earth elements and uranium in high-temperature solutions from the East Pacific Rise hydrothermal vent field (13°N). Nature 303: 795–797Google Scholar
  21. —— (1986) The REE content of some hydrothermal fluids. Chem Geol 55: 51–60Google Scholar
  22. Möller P (1983) Lanthanoids as a geochemical probe and problems in lanthanoid geochemistry-Distribution and behavior of lanthanoids in non-magmatic-phases. In:Sinha SP (ed) Systematics and the properties of the lanthanides. NATO ASI series. Series C, Mathematical and physical sciences, no. 109: 561-616Google Scholar
  23. —— (1989) Minor and trace elements in magnesite. In:Möller P (ed) Magnesite: Geology, mineralogy, geochemistry, formation of Mg-carbonates. Monogr Ser Min Dept N° 28. Bornträger, Berlin, pp 173–195Google Scholar
  24. —— (1982) Die Entwicklung von Flu ßspatmineralisationen im Bereich des Schwarzwaldes. Jh geol Landesamt Baden-Württemberg 24: 35–70Google Scholar
  25. —— (1984) The origin of the calcites from Pb-Zn veins in the Harz Mountains, Federal Republic of Germany. Chem Geol 45: 91–112Google Scholar
  26. —— (1991) Element partitioning in calcite as a function of solution flow rate: a study on vein calcites from the Harz Mountains. Mineral Deposita 26: 175–179Google Scholar
  27. Morgan JW, Wandless GA (1980) Rare earth elements in some hydrothermal minerals: evidence for crystallographic control. Geochim Cosmochim Acta 44: 973–980Google Scholar
  28. Morteani G, Neugebauer H (1990) Chemical and tectonic controls on the formation of sparry magnesite deposits-the deposits of the northern Greywacke zone (Austria). Geol Rundsch 79/2: 337–344Google Scholar
  29. Nance WB, Taylor SR (1976) Rare earth element patterns and crustal evolution-1. Australian post-Archean sedimentary rocks. Geochim Cosmochim Acta 40: 1539–1551Google Scholar
  30. Olivarez AM, Owen RM (1989) REE/Fe variations in hydrothermal sediments: Implications for the REE content of seawater. Geochim Cosmochim Acta 53: 757–762Google Scholar
  31. Pistotnik J (1974) Zur Geologie des NW-Randes der Gurktaler Masse (Stangalm-Mesozoikum, Osterreich). Mitt geol Ges 66/67: 127–141Google Scholar
  32. Robie RA, Hemingway BS, Fisher JR (1978) Thermodynamic properties of minerals and related substances at 290.15 K and one bar (10s pascals) pressure and at higher temperatures. US Geol Surv Bull 1452/456Google Scholar
  33. Schimana R (1986) Neue Ergebnisse zur Entwicklungsgeschichte des Kristallins um Radenthein (Kärnten, Österreich). Mitt Ges geol Bergbaustud Österr 33: 221–232Google Scholar
  34. Schroll E, Papesch W, Dolezel P (1986) Beitrag der C- und O-Isotopenanalyse zur Genese ostalpiner Sideritvorkommen. Mitt Öst Geol Ges 78: 181–191Google Scholar
  35. Schulz O, Schroll E, Dieber K, Fuchs H (1986) Zur Frage der Sideritgenese der Lagerstätten um Hüttenberg in Kärnten. Carinthia II 176/96: 479–512Google Scholar
  36. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A 32: 751–767Google Scholar
  37. Shock EL, Helgeson HC (1988) Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Correlation algorithms for ionic species and equation of state predictions to 5 Kb and 1000°C. Geochim Cosmochim Acta 52: 2009–2036Google Scholar
  38. ——, ——Sverjensky DA (1989) Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Standard partial molal properties of inorganic neutral species. Geochim Cosmochim Acta 53: 2157–2183Google Scholar
  39. Sholkovitz ER (1990) Rare-earth elements in marine sediments and geochemical standards. Chem Geol 88: 333–347Google Scholar
  40. Sholkovitz ER, Piepgras DJ, Jacobsen SB (1989) The pore water chemistry of rare earth elements in Buzzard Bay sediments. Geochim Cosmochim Acta 53: 2847–2856Google Scholar
  41. Sverjensky DA (1984) Europium redox equilibria in aqueous solution. Earth Planet Sci Letters 67: 70–78Google Scholar
  42. Tanger JC, Helgeson HC (1988) Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Revised equations of state for the standard partial molal properties of ions and electrolytes. Am J Sci 288: 19–98Google Scholar
  43. Tufar W (1979) Ostalpine Lagerstätten. Exkursionsfuhrer Dt Geol Ges B3: 1–127Google Scholar
  44. —— (1989) Formation of magnesite in the Radenthein (Carinthia/Austria) type locality. In:Möller P (ed) Magnesite: Geology, mineralogy, geochemistry, formation of Mg-carbonates. Monogr Ser Min Dept N° 28. Bornträger, Berlin, pp 35–171Google Scholar
  45. Wood SA (1990) The aqueous geochemistry of the rare-earth elements and yttrium. 2. Theoretical predictions of speciation in hydrothermal solutions to 350°C at saturation water vapor pressure. Chem Geol 88: 99–125Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • M. Bau
    • 1
  • P. Möller
    • 1
  1. 1.Hahn-Meitner-Institut BerlinBerlin 39Germany

Personalised recommendations