Advertisement

Mathematische Zeitschrift

, Volume 198, Issue 4, pp 479–491 | Cite as

The divisor class group of ordinary and symbolic blow-ups

  • A. Simis
  • Ngô Viêt Trung
Article

Keywords

Class Group Divisor Class Divisor Class Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Ba]
    Barshay, J.: Graded algebras of powers of ideals generated by A-sequences. J. Algebra25, 90–99 (1973)Google Scholar
  2. [Bou1]
    Bourbaki, N.: Algèbra Commutative, Chapitre 2: Localization. Paris: Hermann 1961Google Scholar
  3. [Bou2]
    Bourbaki, N.: Algèbra Commutative, Chapitre 7: Diviseurs. Paris: Hermann 1965Google Scholar
  4. [Br1]
    Bruns, W.: Die Divisorenklassengruppe der Restklassenringe von Polynomringen nach Determinantenidealen. Rev. Roum. Math. Pures Appl.20, 1109–1111 (1975)Google Scholar
  5. [Br2]
    Bruns, W.: The canonical module of a determinantal ring. Commutative Algebra: Durham, London Math. Soc. Lecture Notes72, 109–120 (1981)Google Scholar
  6. [Bro]
    Brodmann, M.: Blow-up and asymptotic depth of higher conormal modules. PreprintGoogle Scholar
  7. [Br-Si]
    Bruns, W., Simis, A.: Symmetric algebras of modules arising from a fixed submatrix of a generic matrix. J. Pure Appl. Algebra,49, 227–245 (1987)Google Scholar
  8. [Fo]
    Fossum, R.: The divisor class group of a Krull domain, Ergebnisse der Mathematik, Band 74. Berlin-Heidelberg-New York: Springer 1973Google Scholar
  9. [Go]
    Goto, S.: The divisor class group of a certain Krull domain. J. Math. Kyoto Univ.17, 47–50 (1977)Google Scholar
  10. [Hu]
    Huneke, C.: On the finite generation of symbolic blow-ups. Math. Zeit.179, 465–472 (1982)Google Scholar
  11. [Hu-Si-V]
    Huneke, C., Simis, A., Vasconcelos, W.: Reduced normal cones are domains Contemp. Math., to appearGoogle Scholar
  12. [H-S-V]
    Herzog, J., Simis, A., Vasconcelos, W.: On the canonical module of the Rees algebra and the associated graded ring of an ideal. J. Algebra,105, 285–302 (1987)Google Scholar
  13. [H-V]
    Herzog, J., Vasconcelos, W.: On the divisor class group of Rees algebras. J. Algebra93, 182–188 (1985)Google Scholar
  14. [K-R]
    Katz, D., Ratliff, L.J., Jr.: On the symbolic Rees ring of a primary ideal. Commun. Algebra14, 959–970 (1986)Google Scholar
  15. [Ro]
    Rossi, M.E.: A note on symmetric algebras which are Gorenstein rings. Commun. Algebra11 (22) 2575–2591 (1983)Google Scholar
  16. [Sa]
    Samuel, P.: Lecture on Unique Factorization Domains (Notes by P. Murthy) Tata Inst. for Fund. Research, No. 30, Bombay 1964Google Scholar
  17. [Sh]
    Shimoda, Y.: The class group of the Rees algebra over polynomial rings. Tokyo J. Math.2, 129–132 (1979)Google Scholar
  18. [Si]
    Simis, A.: The basic exact sequence for the divisor class group of a normal Rees algebra (unpublished)Google Scholar
  19. [Vi]
    Villarreal, R.: Koszul homology of Cohen-Macaulay ideals. Ph. D. thesis, Rutgers UniversityGoogle Scholar
  20. [Tr]
    Trung, N.V.: Über die Übertragung der Ringeigenschaften zwischenR undR[u]/(F). Math. Nachr.92, 215–229 (1979)Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • A. Simis
    • 1
  • Ngô Viêt Trung
    • 2
  1. 1.Departamento de MatematicaUniversidade Federal De PernambucoRecifeBrasil
  2. 2.Institute of MathematicsHanoiVietnam

Personalised recommendations