Advertisement

Mineralogy and Petrology

, Volume 54, Issue 1–2, pp 55–69 | Cite as

Crystal aging and the formation of fine-scale igneous layering

  • A. E. Boudreau
Article

Summary

Fine-scale layering in igneous intrusions shows parallels with experimentally produced banding observed in crystallizing salt solutions in which recent advances have demonstrated the importance of crystal aging on the development of banding. These experiments, as well as numerical models of fine-scale layering development during crystal aging, reproduce features observed in fine scale layering that are not readily explained by periodic nucleation and crystal growth models. These include the phenomenon of “lost segments”, in which the development of a layer may be reversed such that the layer disappears over time but does so without affecting the overall spacing of later-developing layers, and the development of “doublet” layers, which results when crystals at the margins of developing layers preferentially grow at the expense of those in the center. While these results suggest that crystal aging is the dominant process in the development of fine-scale layering, crystal aging may enhance the textural and modal features of igneous layering initiated by a variety of other crystal settling, nucleation or growth processes.

Keywords

Settling Growth Model Fine Scale Modal Feature Dominant Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Kristall-Alterung und die Bildung von feiner magmatischer Schichtung

Zusammenfassung

Feine Schichtung in magmatischen Intrusionen zeigt Parallelen mit experimentell erzeugter Bänderung, wie sie in kristallisierenden Salzlösungen beobachtet werden kann. An solchen Lösungen haben jüngste Arbeiten gezeigt, daß Kristall-Alterung bei der Ausbildung einer Bänderung eine wichtige Rolle spielt. Diese Experimente reproduzieren ebenso wie numerische Modelle, die die Ausbildung einer feinen Schichtung während der Kristall-Alterung simulieren, Merkmale, die in feinen Schichten auftreten, über nicht leicht mit periodischer Keimbildung und Kristallwachstumsmodellen erklärt werden können. Diese Merkmale umfassen das Phänomen der “verlorenen Segmente”, bei dem die Ausbildung einer Lage in der Weise umgekehrt werden kann, daß die Lage mit der Zeit verschwindet, ohne dabei den Gesamtabstand der später gebildeten Schichten zu beeinflussen, oder die Ausbildung von „Lagenpaaren”. Diese erfolgt, wenn Kristalle an den Rändern der sich entwickelnden Lagen bevorzugt auf Kosten jener im Zentrum wachsen. Während diese Ergebnisse nahelegen, daß Kristall-Alterung bei der Ausbildung von feiner Schichtung der vorherrschende Prozeß ist, kann Kristall-Alterung auch die texturellen und modalen Eigenschaften einer magmatischen Schichtung verstärken, die durch eine Reihe anderer Prozesse wie Kristallsetzung, Keimbildung oder Wachstum eingeleitet wurden.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brandies C, Jaupart C, Allegre CJ (1984) Nucleation, crystal growth and the thermal regime of cooling magmas. J Geophys Res 89: 10161–10177Google Scholar
  2. Boudreau AE (1987) Pattern formation during crystallization and the formation of fine-scale layering. In:Parsons I (ed) Origins of igneous layering. Reidel, Boston, pp 453–472Google Scholar
  3. Boudreau AE (1994) Crystal aging in two crystal, two component systems. S African J Geol (in press)Google Scholar
  4. Feinn D, Ortoleva P, Scalf W, Wotff M (1978) Spontaneous pattern formation in precipitating systems. J Chem Phys 69: 27–39Google Scholar
  5. Feeney R, Schmidt SL, Strickholm P, Chadam J, Ortoleva P (1983) Periodic precipitation and coarsening waves: applications of the competitive particle growth model. J Chem Phys 68: 1293–3011Google Scholar
  6. Fisher GW, Lasaga AC (1981) Irreversible thermodynamics in petrology. In:Lasaga AC, Kirkpatrick RJ (eds) Kinetics of geochemical processes. Mineral Soc Am, Washington DC, pp 171–210 (Rev Mineral 8)Google Scholar
  7. Flicker M, Ross J (1974) Mechanism of chemical instability for periodic precipitation phenomenon. J Chem Phys 60: 3458–3465Google Scholar
  8. Hunter RH (1987) Textural equilibrium in layered igneous rocks. In:Parsons I (ed) Origins of igneous layering. Reidel, Boston, pp 473–504Google Scholar
  9. Kai S, Muller SC, Ross J (1982) Measurements of temporal and spatial sequences on events in periodic precipitation processes. J Chem Phys 76: 1392–1406Google Scholar
  10. Lovett R, Ortoleva P, Ross J (1978) Kinetic instabilities in first order phase transitions. J Chem Phys 69: 947–955Google Scholar
  11. Marsh BD (1988) Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization. I. Theory. Contrib Mineral Petrol 99: 277–291Google Scholar
  12. McBirney AR, Noyes RM (1979) Crystallization and layering of the Skaergaard intrusion. J Petrol 20: 487–554Google Scholar
  13. McBirney AR, White CM, Boudreau AE (1990) Spontaneous development of concentric layering in a solidified siliceous dike, East Greenland. Earth-Sci Rev 29: 321–330Google Scholar
  14. Nabelek PI, Taylor LA, Nofgren GE (1978) Nucleation and growth of plagioclase and the development of textures in a high-alumina basaltic melt. Proc 9th Lunar Planet Sci Conf, pp 725–741Google Scholar
  15. Ortoleva P, Merino E, Moore C, Chadam J (1987) Geochemical self-organization I. Reactiontransport feedbacks and modeling approach. Am J Sci 287: 979–1007Google Scholar
  16. Page NJ, Moring BC (1990) Petrology of the noritic and gabbronoritic rocks below the J-M Reef in the Mountain View area, Stillwater Complex, Montana. US Geol Surv Bull 1674-C: 47Google Scholar
  17. von Rosenberg DU (1969) Methods for the numerical solution of the partial differential equations. Elsevier, New York, p 123Google Scholar
  18. Wager LP, Brown GM (1968) Layered igneous rocks. Oliver and Boyd, Edinburgh, p 588Google Scholar

Copyright information

© Springer Verlag 1995

Authors and Affiliations

  • A. E. Boudreau
    • 1
  1. 1.Department of GeologyDuke UniversityDurhamUSA

Personalised recommendations