Advertisement

Mathematische Zeitschrift

, Volume 191, Issue 3, pp 467–474 | Cite as

On the Zalcman conjecture for starlike and typically real functions

  • Johnny E. Brown
  • Anna Tsao
Article

Keywords

Real Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    Brickman, L., MacGregor, T.H., Wilken, D.R.: Convex hulls of some classical families of univalent functions. Trans. Am. Math. Soc.156, 91–107 (1971)Google Scholar
  2. 2.
    Duren, P.: Coefficients of univalent functions. Bull. Am. Math. Soc.83, 891–911 (1977)Google Scholar
  3. 3.
    Duren, P.: Univalent Functions. Berlin-Heidelberg-New York: Springer 1983Google Scholar
  4. 4.
    FitzGerald, C.H.: Quadratic inequalities and coefficient estimates for schlicht functions. Arch. Rational Mech. Anal.46, 356–368 (1972)Google Scholar
  5. 5.
    Littlewood, J.E.: On inequalities in the theory of functions. Proc. Lond. Math. Soc.23, 481–519 (1925)Google Scholar
  6. 6.
    Livingston, A.E.: The coefficients of multivalent close-to-convex functions. Proc. Am. Math. Soc.21, 545–552 (1969)Google Scholar
  7. 7.
    Milin, I.M.: On the coefficients of univalent functions. Dokl. Akad. Nauk SSR,176, 1015–1018 (1967)Google Scholar
  8. 8.
    Milin, I.M.: Univalent Functions and Orthonormal Systems. Isdat. Nauka: Moscow, 1971 (in Russian), English transl., Am. Math. Soc., Providence, R.I., 1977Google Scholar
  9. 9.
    Pfluger, A.: On a coefficient problem for schlicht functions, in Advances in Complex Function Theory, Maryland, 1973/74. Lecture Notes in Math.505, pp. 79–91. Berlin, Heidelberg, New York: Springer 1976Google Scholar
  10. 10.
    Pommerenke, Ch.: Univalent Functions (with a chapter on quadratic differentials by G. Jensen). Göttingen: Vandenhoeck and Ruprecht 1975Google Scholar
  11. 11.
    Rogosinski, W.: Über positive harmonische Entwicklungen und typisch-reelle Potenzreihen. Math. Z.35, 93–121 (1932)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Johnny E. Brown
    • 1
  • Anna Tsao
    • 2
  1. 1.Department of MathematicsPurdue UniversityWest LafayetteUSA
  2. 2.Department of MathematicsU.S. Naval AcademyAnnapolisUSA

Personalised recommendations