Mineralogy and Petrology

, Volume 55, Issue 1–3, pp 177–201 | Cite as

Geochemical and structural evolution of micas in the Rožná and Dobrá Voda pegmatites, Czech Republic

  • P. Černý
  • R. Chapman
  • J. Staně
  • M. Nová
  • H. Baadsgaard
  • M. Rieder
  • M. Kavalová
  • L. Ottolini


The chemistry, structural parameters, polytypism, optical properties and Rb-Sr isotopes were examined in 11 to 60 samples of biotite, muscovite and lepidolite from the pegmatites at Rožná (the type locality of lepidolite; 323 ± 4Ma) and Dobrá Voda (306 ± 9Ma) in western Moravia. At both localities, early endocontact biotite is followed inwards by muscovite and lepidolite, which is concentrated in and around the core. At Rožná, a 1M lepidolite follows after 2M1 muscovite but all later generations of lepidolite are 2M2, close to Tri50 Ply50 and in part associated with muscovite 2M1. At Dobrá Voda, all lepidolite types are 1M and free of muscovite, and the late varieties approximate Tri30 Ply70. At both localities, a trend of increasing μHF is indicated during the progress of mica crystallization, culminating in precipitation of topaz. Polytypism of lepidolite is not correlatable with any compositional or growth feature, or their combination. Throughout the mica crystallization, Rb/Cs decreases but K/Rb becomes reversed after an initial decrease. Boron is partitioned preferentially into muscovite (up to 1.10 wt.% B2O3) but Be, Zn, Mn and Sc are enhanced in lepidolite. A slight increase in Fe, Ba and Cl in the last generation of lepidolite might be possibly due to mixing of residual pegmatite fluids with metamorphic pore solutions.


Boron Czech Republic Late Variety B2O3 Type Locality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Geochemische und strukturelle Entwicklung der Glimmer in den Pegmatiten von Rožná und Dobrá Voda, Tschechische Republik


In 11 bis 60 Proben von Biotit, Muskovit und Lepidolith aus den Pegmatiten von Rožná (Typlokalität des Lepidoliths; 323 ± 9 Ma) in Westmähren wurden Chemie, Struktur-parameter, Polytypie, optische Eigenschaften und Rb-Sr-Isotopie untersucht. An beiden Lokalitäten wird früher Biotit an Endokontakten nach Innen von Muskovit und Lepidolith gefolgt, letzterer ist in und um den Kern konzentriert. In Rožná folgt 1M-Lepidolith auf 2M1-Muskovit, aber alle späteren Lepidolithgenerationen sind 2M2, nahe Tri50Ply50 und zum Teil mit 2M1-Muskovit vergesellschaftet. In Dobrá Voda sind alle Lepidolithe vom Typ 1M und frei von Muskovit, die späten Varietäten kommen Tri50Ply50 nahe. An beiden Lokalitäten ist während des Fortschreitens der Glimmerkristallisation eine Tendenz von steigendem μHF angezeigt, die in der Ausfällung von Topas ihren Höhepunkt findet. Die Polytypie des Lepidoliths kann nicht mit irgendeiner Eigenheit der Zusammensetzung oder des Wachstums korreliert worden, auch nicht mit einer Kombination von diesen. Während der ganzen Glimmerkristallisation nimmt Rb/Cs ab, aber die Tendenz von K/Rb ändert sich nach anfänglichem Abfall. Das Bor verteilt sich bevorzugt auf den Muskovit (bis zu 1.10 Gew. -% B2O3), aber die Be-, Zn-, Mn- und Sc-Gehalte sind im Lepidolith erhöht. Ein leichter Ansteig von Fe, Ba und Cl in der letzten Lepidolithgeneration könnte vielleicht durch eine Mischung von pegmatitischen Restlösungen mit metamorphen Porenlösungen verursacht sein.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bailey SW (1984) Appendix 2: X-ray identification of mica polytypes. 1984 M. S. A. Short Course on Micas, 10 ppGoogle Scholar
  2. Baronnet A (1975) L'aspect croissance du polymorphisme et du polytypisme dans les micas synthétiques d'intérèt pétrologique. Fortschr Mineral 52: 203–216Google Scholar
  3. Berggren T (1941) Minerals of the Varuträsk pegmatite XXV; Some new analyses of lithium-bearing mica minerals. Geol Fören Förh 63: 262–278Google Scholar
  4. Burkart E (1953) Mähren's Minerale und ihre Literatur. Czechosl Acad Sci, PrahaGoogle Scholar
  5. Burnham CW (1962) Lattice constant refinement. Carnegie Inst Wash Yearb 61: 132–135Google Scholar
  6. Černý P (1982a) Mineralogy of rubidium and cesium. MAC Short Course Handb 8:149–162Google Scholar
  7. Černý P (1982b) Petrogenesis of granitic pegmatites. MAC Short Course Handb 8: 405–461Google Scholar
  8. Černý P, Burt DM (1984) Paragenesis, crystallochemical characteristics, and geochemical evolution of micas in granitic pegmatites. In:Bailey SW (ed) Micas Rev Mineral 13: 257–297Google Scholar
  9. Chaplin CE (1981) Isotope geology of the Gloserheia granite pegmatite, South Norway. Thesis, University of Alberta, pp 109–110Google Scholar
  10. Chaudhry MN, Howie RA (1973) Lithium-aluminum micas from the Meldon aplite, Devonshire, England. Mineral Mag 39: 289–296Google Scholar
  11. Ercit TS (1986) The simpsonite paragenesis; the crystal chemistry and geochemistry of extreme Ta fractionation. Thesis, University of Manitoba, 468 pp (unpublished)Google Scholar
  12. Ercit TS, Černý P, Hawthorne FC (1993) Cesstibtanite - a geologic introduction to the inverse pyrochlores. Mineral Petrol 48: 235–255Google Scholar
  13. Foord EE, Martin RF, Fitzpatrick JJ, Taggart Jr JE, Crock JG (1991) Boromuscovite, anew member of the mica group, from the Little Three mine pegmatite, Ramona district, San Diego County, California. Am Mineral 76: 1998–2002Google Scholar
  14. Foster MD (1960) Interpretation of the composition of lithium micas. US Geol Survey Prof Pap 354-E; 115–147Google Scholar
  15. Franke W (1989) Tectonostratigraphic units in the Variscan belt of central Europe. Geol Soc Am Spec Pap 230: 67–90Google Scholar
  16. Gordiyenko VV (1973) Cesium in lepidolite as indicator of the cesium content of granitic pegmatites. Doklady Acad Sci USSR 209: 193–196 (in Russian)Google Scholar
  17. Gordiyenko VV, Ponomareva NI (1988) Physico-chemical stability conditions of lithian micas of the lepidolite series. Zapiski Vses Mineral Obsh 117: 633–638 (in Russian)Google Scholar
  18. Gordiyenko VV, Semenova TF, Simakova YS (1991) Composition and polytypism of aluminolithian micas in granitic pegmatites. Mineral Zhur 13: 67–84 (in Russian)Google Scholar
  19. Grew ES, Belakovskyi DI, Fleet ME, Yates MG, McGee JJ, Marquez N (1983) Reed-mergnerite and associated minerals from peralkaline pegmatite, Dara-i-Pioz, southern Tien Shan, Tajikistan. Eur J Mineral 5: 971–984Google Scholar
  20. Hawthorne FC, Černý P (1982) The mica group. MAC Short Course Handb 8: 63–98Google Scholar
  21. Heinrich EW (1967) Micas of the Brown Derby pegmatites, Gunnison County, Colorado. Am Mineral 52: 1110–1121Google Scholar
  22. Jolliff BL, Papike JJ, Shearer CK (1987) Fractionation trends in mica and tourmaline as indicators of pegmatite internal evolution: Bob Ingersoll pegmatite, Black Hills, South Dakota. Geochim Cosmochim Acta 51: 519–534Google Scholar
  23. Kantor J, Kupčo G (1956) On the absolute age of the Rožná lepidolite by the strontium method. Geol Práce GÚDŠ, Reports 7: 3–12 (in Slovak)Google Scholar
  24. Klaproth MH (1792) Aus einem Schreiben von Hrn. Bergrath Karsten in Berlin. Bergmän-nisches Journal 1792, p 80Google Scholar
  25. Köhler H, Propach G, Troll G (1989) Exkursion zur Geologie, Petrographie und Geochronologie des NE-bayerischen Grundgebirges. Eur J Mineral 1 (Spec Issue 2): 1–84Google Scholar
  26. Kretz R (1983) Symbols for rock-forming minerals. Am Mineral 68: 277–279Google Scholar
  27. Levinson AA (1953) Studies in the mica group; relationship between polymorphism and composition in the muscovite-lepidolite system. Am Mineral 38: 88–107Google Scholar
  28. London D (1982) Stability of spodumene in acidic and saline fluorine-rich environments. Carnegie Inst Geophys Lab Ann Rep 81: 331–334Google Scholar
  29. London D (1990) Internal differentiation of rare-element pegmatites; a synthesis of recent research. In:Stein HJ, Hannah JL (eds) Geol Soc America Spec Pap 246: 35–50Google Scholar
  30. London D (1992) Application of experimental petrology to the genesis and crystallization of granitic pegmatites. Can Mineral 30: 499–540Google Scholar
  31. Loucks RR (1991) The bound interlayer H2O content of potassic white micas: muscovite-hydromuscovite-hydropyrophyllite series. Am Mineral 76: 1563–1579Google Scholar
  32. Munoz JL (1968) Physical properties of synthetic lepidolites. Am Mineral 53: 1490–1512Google Scholar
  33. Munoz JL (1971) Hydrothermal stability relations of synthetic lepidolite. Am Mineral 56: 2069–2087Google Scholar
  34. Němec D (1990) Chemical composition of white micas of the west-Moravian pegmatites. Acta Mus Moraviae, Sci Nat 75: 41–51Google Scholar
  35. Novák M (1992) Rožná near Bystřice nad Pernštejnem. In: Field Trip Guidebook, Lepidolite 200 Symposium, Nové Město na Moravb 1992, pp 21–26Google Scholar
  36. Novák M, Černý P, Čech F, Staněk J (1992) Granitic pegmatites in the territory of the Moravian and Bohemian Moldanubicum. In: Field Trip Guidebook, Lepidolite 200 Symposium, Nové Mésto na Moravb 1992, pp 11–20Google Scholar
  37. Novotný M, Stelcl J (1951) Pegmatites from Hradisko and Borovina at Rožná. Acta Acad Sci Nat Moravo-Silesiacae 23, 12-F25: 259–274 (in Czech)Google Scholar
  38. Ottolini L, Bottazzi P, Vannucci R (1993) Quantification of lithium, beryllium and boron in silicates by secondary ion mass spectrometry using conventional energy filtering. Analyt Chem 65: 1960–1968Google Scholar
  39. Paul BJ (1984) Mineralogy and geochemistry of the Huron Clain pegmatite, southeastern Manitoba. Thesis, University of Manitoba, 364 pp (unpublished)Google Scholar
  40. Pouchou JL, Pichoir F (1985) “PAP” (phi-rho-z) procedure for improved quantitative microanalysis. In:Armstrong JT (ed) Microbeam analysis. San Francisco Press, San Francisco, pp 104–106Google Scholar
  41. Rancourt DG, Dang M-Z, Lalonde AE (1992) Mössbauer spectroscopy of tetrahedral Fe3+ in trioctahedral micas. Am Mineral 77: 34–43Google Scholar
  42. Rinaldi R, Černý P, Ferguson RB (1972) The Tanco pegmatite at Bernie Lake, Manitoba. VI. Lithium-rubidium-cesium micas. Can Mineral 11: 690–707Google Scholar
  43. Robert J-L, Volfinger M, Barrandon JN, Basutçu M (1983) Lithium in the interlayer space of synthetic trioctahedral micas. Chem Geol 40: 337–351Google Scholar
  44. Ross M, Takeda H, Wones DR (1966) Mica polytypes: systematic description and identification. Science 151: 191–193Google Scholar
  45. Sartori F (1976) The crystal structure of a 1M lepidolite. Tscher Mineral Petrol Mitt 23: 65–75Google Scholar
  46. Sekanina J, Vysloužil J (1929) New reports on lepidolite from Rožná. Acta Soc Sci Nat Moravicae 5-2-1743: 25–32 (in Czech)Google Scholar
  47. Shearer CK, Papike JJ (1986) Distribution of boron in the Tip Top pegmatite, Black Hills, South Dakota. Geology 14: 199–123Google Scholar
  48. Staněk J (1965) The Dobrá Voda pegmatite near Velké Meziříčí. Folia Fac Sci Nat Univ Purkynianae 6–8: 1–39 (in Czech)Google Scholar
  49. Stevens RE (1938) New analyses of lepidolites and their interpretation. Am Mineral 23: 607–628Google Scholar
  50. Strunz H (1962) Bor and Beryllium in Phyllosilikaten. Rend See Mineral Ital 13: 372–376Google Scholar
  51. Swanson TH, Bailey SW (1981) Redetermination of the lepidolite-2M1 structure. Clay and Clay Minerals 29: 81–90Google Scholar
  52. Takeda H, Haga N, Sadanaga R (1971) Structural investigation of polymorphic transition between 2M2-, 1M - lepidolite and 2M1-muscovite. Mineral J Japan 6: 203–215Google Scholar
  53. Teertstra DK, Černý P, Novák M (1995) Compositional and textural evolution of pollucite in pegmatites of the Moldanubicum. Mineral Petrol 55 (this volume)Google Scholar
  54. Tröger WE (1962) Über Protolithionit und Zinnwaldit. Ein Beitrag zur Kenntnis von Chemismus und Optik der Lithiumglimmer. Beitr Mineral Petrog 8: 418–431Google Scholar
  55. Vysloužil J (1929) Analytical contributions to the Moravian mineralogy and petrography. Bull 6th Conf Czechoslovak Sci Med Doc Engineers, Praha 1928, part III (in Czech)Google Scholar
  56. Wilson GC, Long JVP (1983) The distribution of lithium in some Cornish minerals: ion microprobe measurements. Mineral Mag 47: 191–199Google Scholar
  57. Yvon K, Jeitschko W, Parthé E (1977) LAZY PULVERIX, a computer program for calculating X-ray and neutron diffraction patterns. J Appl Cryst 10: 73–74Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • P. Černý
    • 1
  • R. Chapman
    • 1
  • J. Staně
    • 2
  • M. Nová
    • 3
  • H. Baadsgaard
    • 4
  • M. Rieder
    • 5
  • M. Kavalová
    • 6
  • L. Ottolini
    • 7
  1. 1.Department of Geological SciencesUniversity of ManitobaWinnipegCanada
  2. 2.Department of Mineralogy, Petrology and GeochemistryMasaryk UniversityBrnoCzech Republic
  3. 3.Department of Mineralogy and PetrologyMoravian MuseumBrnoCzech Republic
  4. 4.Department of GeologyUniversity of AlbertaEdmontonCanada
  5. 5.Institute of Geological SciencesCharles UniversityPrahaCzech Republic
  6. 6.Department of Mineralogy, Geochemistry and CrystallographyCharles UniversityPrahaCzech Republic
  7. 7.CNR Centro di Studio per la Cristallochimica e la Cristallografia c/o Dipartimento di Science della TerraUniversity di PaviaPaviaItaly

Personalised recommendations