Mathematische Zeitschrift

, Volume 191, Issue 4, pp 623–631

Banach spaces with the condition of Mazur

  • Thomas Kappeler
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amir, D., Lindenstrauss, J.: The structure of weakly compact sets in Banach spaces. Ann. of Math.88, 35–46 (1968)Google Scholar
  2. Batt, J.: Application of the Orlicz-Pettis theorem to operator-valued measures and compact and weakly compact linear transformations on the space of continuous functions. Rev. Roum. Math. Pures Appl.14, 907–935 (1969)Google Scholar
  3. Corson, H.H.: The weak topology of a Banach space, Trans. Am. Math. Soc.101, 1–15 (1961).Google Scholar
  4. Diestel, J.: The Radon-Nikodym property and spaces of operators, in Measure Theory, Oberwolfach 1975. Lecture Notes in Mathematics541, p. 211–229. Berlin Heidelberg New York: Springer 1976Google Scholar
  5. Edgar, G.: Measurability in a Banach space II. Indiana Univ. Math. J.28, 559–579 (1979)Google Scholar
  6. Hagler, J., Sullivan, F.: Smoothness and weak* sequential compactness. Proc. of the Am. Math. Soc.78, 497–503 (1980)Google Scholar
  7. Kuo, T.H.: On conjugate Banach spaces with the Radon-Nikodym property. Pac. J. Math.59, 497–503 (1975)Google Scholar
  8. Lindenstrauss, J., Stegall, C.: Examples of separable Banach spaces which do not containl 1 and whose duals are non separable. Studia Math.56, 81–105 (1975)Google Scholar
  9. Semadeni, Z.: Banach spaces of continuous functions, vol. 1, Warszawa, 1971Google Scholar
  10. Wilansky, A.: Mazur spaces. Int. J. Math. Math. Sci.4, 39–53 (1981)Google Scholar
  11. Williams, R.D.: On certain Banach spaces which arew * sequentially dense in their second duals. Duke Math. J.37, 121–126 (1970)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Thomas Kappeler
    • 1
  1. 1.ETH-ZentrumZürichSwitzerland

Personalised recommendations