Mathematische Zeitschrift

, Volume 177, Issue 3, pp 323–340 | Cite as

Finite-time blow-up for solutions of nonlinear wave equations

  • Robert T. Glassey


Wave Equation Nonlinear Wave Nonlinear Wave Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fujita, H.: On the Blowing-up of Solutions of the Cauchy problem foru t=Δu+u1+α. J. Fac. Sci. Univ. Tokyo Sect. IA Math.13, 109–124 (1966)Google Scholar
  2. 2.
    Glassey, R.: Blow-up Theorems for Nonlinear Wave Equations. Math. Z.132, 183–203 (1973)Google Scholar
  3. 3.
    Glassey, R.: On the blowing up of Solutions to the Cauchy problem for nonlinear Schrödinger equations. J. Mathematical Phys.18, 1794–1797 (1977)Google Scholar
  4. 4.
    John, F.: Blow-up of Solutions of Nonlinear Wave Equations in Three Space Dimensions. Manuscripta Math.28, 235–268 (1979)Google Scholar
  5. 5.
    Kato, T.: Blow-up of solutions of some nonlinear hyperbolic equations. Comm. Pure Appl. Math.32, 501–505 (1980)Google Scholar
  6. 6.
    Keller, J.: On Solutions of Nonlinear Wave Equations. Comm. Pure Appl. Math.10, 523–530 (1957)Google Scholar
  7. 7.
    Levine, H.: Instability and Nonexistence of global solutions to nonlinear wave equations of the formPu tt=−Au+F(u). Trans. Amer. Math. Soc.192, 1–21 (1974)Google Scholar
  8. 8.
    Sideris, T.: Ph. D. thesis. Bloomington: Indiana University 1981Google Scholar
  9. 9.
    Strauss, W.A.: Everywhere defined wave operators (In: Nonlinear Evolution Equations M.G. Crandall, ed.), Proceedings of a Symposium (Madison 1977), pp. 85–102. New York-San Francisco-London: Academic Press 1978Google Scholar
  10. 10.
    Watson, G.N.: A Treatise on the Theory of Bessel Functions (2nd Ed.). London: Cambridge University Press, 1962Google Scholar
  11. 11.
    Weissler, F.B.: Existence and Nonexistence of Global Solutions for a Semilinear Heat Equation. PreprintGoogle Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Robert T. Glassey
    • 1
  1. 1.Department of MathematicsIndiana UniversityBloomingtonU.S.A.

Personalised recommendations